Results 221 to 230 of about 1,185,001 (388)

Development of Aluminum Scandium Alloys for Hydrogen Storage Valves

open access: yesAdvanced Engineering Materials, EarlyView.
Different aluminum alloy series and various aluminum‐scandium alloys with differing Sc and Zr levels are evaluated for use in hydrogen storage valve production. The alloys undergo hardness testing, optical microscopy, and tensile strength analysis, with hardening behavior studied under varying conditions.
Francisco García‐Moreno   +4 more
wiley   +1 more source

Diagenetic facies and pore evolution of tight sandstone reservoirs of the Jiamuhe formation in the Shawan sag, Junggar basin. [PDF]

open access: yesSci Rep
Zongquan Y   +9 more
europepmc   +1 more source

The Anodic Dissolution of Cadmium [PDF]

open access: bronze, 1967
James W. Johnson   +3 more
openalex   +1 more source

Preparation and Thermal Modification of Disentangled Ultrahigh‐Molecular‐Weight Polyethylene Particles for Powder‐Based Additive Manufacturing

open access: yesAdvanced Engineering Materials, Volume 27, Issue 14, July 2025.
Ultrahigh‐molecular‐weight polyethylene powders (<≈40 μm) with a bulk density of 260 g L−1 are prepared from a silica supported bisimine pyridine iron catalyst. The nascent product is disentangled and can be thermally densified without loss of its low viscosity.
Adrian Vaghar   +4 more
wiley   +1 more source

Combining Metal Additive Manufacturing and Casting Technology: High Performance Cooling Channels for Electric Powertrain Components

open access: yesAdvanced Engineering Materials, EarlyView.
When realized as inserts in high‐pressure die casting, aluminum cooling channels for electric powertrain components and similar applications typically require a stabilizing filler to survive the process. The present study investigates relinquishing this filler using additively manufactured inserts promising performance improvements.
Dirk Lehmhus   +9 more
wiley   +1 more source

Microstructural and Mechanical Properties of a Hard Anodic Coating Applied on an Elastically Prestrained Aluminum Substrate

open access: yesAdvanced Engineering Materials, EarlyView.
Prestraining the substrate influences coating formation process. Higher prestraining force leads to higher coating thickness and lower hardness. Increase in prestraining force enhances preliminary damage in hard anodic coating. Fatigue damage mechanisms change for hard anodized prestrained samples.
Linto George Thomas   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy