Results 1 to 10 of about 543 (81)

On the spread of the distance signless Laplacian matrix of a graph [PDF]

open access: diamondActa Universitatis Sapientiae, Informatica, 2023
Abstract Let G be a connected graph with n vertices, m edges. The distance signless Laplacian matrix DQ(G) is defined as DQ(G) = Diag(Tr(G)) + D(G), where Diag(Tr(G)) is the diagonal matrix of vertex transmissions and D(G) is the distance matrix of G.
Pirzada S., Haq Mohd Abrar Ul
openaire   +4 more sources

Sharp Bounds on (Generalized) Distance Energy of Graphs [PDF]

open access: yesMathematics, 2020
Given a simple connected graph G, let D ( G ) be the distance matrix, D L ( G ) be the distance Laplacian matrix, D Q ( G ) be the distance signless Laplacian matrix, and T r ( G ) be the vertex transmission ...
Abdollah Alhevaz   +3 more
doaj   +3 more sources

Merging the Spectral Theories of Distance Estrada and Distance Signless Laplacian Estrada Indices of Graphs [PDF]

open access: yesMathematics, 2019
Suppose that G is a simple undirected connected graph. Denote by D ( G ) the distance matrix of G and by T r ( G ) the diagonal matrix of the vertex transmissions in G, and let α ∈ [ 0 , 1 ] .
Abdollah Alhevaz   +2 more
doaj   +3 more sources

On comparison between the distance energies of a connected graph. [PDF]

open access: yesHeliyon
Let G be a simple connected graph of order n having Wiener index W(G). The distance, distance Laplacian and the distance signless Laplacian energies of G are respectively defined asDE(G)=∑i=1n|υiD|,DLE(G)=∑i=1n|υiL−Tr‾|andDSLE(G)=∑i=1n|υiQ−Tr‾|, where ...
Ganie HA, Rather BA, Shang Y.
europepmc   +2 more sources

On the eigenvalues of the distance signless Laplacian matrix of graphs

open access: diamondProyecciones (Antofagasta)
Let G be a connected graph and let DQ(G) be the distance signless Laplacian matrix of G with eigenvalues ρ1≥ ρ2≥…≥ ρn. The spread of the matrix DQ}(G) is defined as s(DQ(G)) := maxi,j| ρi-ρj| = ρ1- ρn. We derive new bounds for the distance signless Laplacian spectral radius ρ1 of G.
Akbar Jahanbani   +3 more
openaire   +3 more sources

NEW BOUNDS AND EXTREMAL GRAPHS FOR DISTANCE SIGNLESS LAPLACIAN SPECTRAL RADIUS [PDF]

open access: yesJournal of Algebraic Systems, 2021
The distance signless Laplacian spectral radius of a connected graph $G$ is the largest eigenvalue of the distance signless Laplacian matrix of $G$, defined as $D^{Q}(G)=Tr(G)+D(G)$, where $D(G)$ is the distance matrix of $G$ and $Tr(G)$ is the diagonal ...
A. Alhevaz, M. Baghipur, S. Paul
doaj   +1 more source

Some inequalities involving the distance signless Laplacian eigenvalues of graphs [PDF]

open access: yesTransactions on Combinatorics, 2021
‎Given a simple graph $G$‎, ‎the distance signlesss Laplacian‎ ‎$D^{Q}(G)=Tr(G)+D(G)$ is the sum of vertex transmissions matrix‎ ‎$Tr(G)$ and distance matrix $D(G)$‎.
Abdollah Alhevaz   +3 more
doaj   +1 more source

Distance (signless) Laplacian spectrum of dumbbell graphs [PDF]

open access: yesTransactions on Combinatorics, 2023
In this paper, we determine the distance Laplacian and distance signless Laplacian spectrum of generalized wheel graphs and a new class of graphs called dumbbell graphs.
Sakthidevi Kaliyaperumal   +1 more
doaj   +1 more source

On the Second-Largest Reciprocal Distance Signless Laplacian Eigenvalue

open access: yesMathematics, 2021
The signless Laplacian reciprocal distance matrix for a simple connected graph G is defined as RQ(G)=diag(RH(G))+RD(G). Here, RD(G) is the Harary matrix (also called reciprocal distance matrix) while diag(RH(G)) represents the diagonal matrix of the ...
Maryam Baghipur   +3 more
doaj   +1 more source

Cospectral constructions for several graph matrices using cousin vertices

open access: yesSpecial Matrices, 2021
Graphs can be associated with a matrix according to some rule and we can find the spectrum of a graph with respect to that matrix. Two graphs are cospectral if they have the same spectrum.
Lorenzen Kate
doaj   +1 more source

Home - About - Disclaimer - Privacy