Results 141 to 150 of about 555,264 (327)

Machine Learning‐Guided Discovery of Factors Governing Deformation Twinning in Mg–Y Alloys

open access: yesAdvanced Engineering Materials, EarlyView.
This study uses interpretable machine learning to identify key microstructural and processing parameters related to twinning in magnesium‐yttrium (Mg–Y) alloys. It is identified that using only grain size, grain orientation, and total applied strain, grains can be classified with 84% accuracy based on whether the grain contains a twin.
Peter Mastracco   +8 more
wiley   +1 more source

Hybrid Framework Materials: Next‐Generation Engineering Materials

open access: yesAdvanced Engineering Materials, EarlyView.
Hybrid organic–inorganic materials merge the unique properties of organic and inorganic compounds, enabling applications in optoelectronics, gas storage, and catalysis. This review explores metal‐organic frameworks, hybrid organic–inorganic perovskites, and the emerging field of hybrid glasses, emphasizing their structures, functionalities, and ...
Jay McCarron   +2 more
wiley   +1 more source

High‐Entropy Ti, Zr, Hf, Ta Multiphase Diboride with Deformation Resistance up to 2000 °C

open access: yesAdvanced Engineering Materials, EarlyView.
Ceramics are brittle and strength decreases with temperature. The multiphase high‐entropy (Ti0.25Ta0.25Hf0.25Zr0.25)B2 with heterogeneity at the nano‐ and microscale demonstrates deformation resistance up to 2000 °C, with maximum bending strength at 1800 °C.
Petre Badica   +3 more
wiley   +1 more source

DCS-based MBSBL joint reconstruction of multi-sensors data for energy-efficient telemonitoring of human activity

open access: yesInternational Journal of Distributed Sensor Networks, 2018
The joint reconstruction of nonsparse multi-sensors data with high quality is a challenging issue in human activity telemonitoring. In this study, we proposed a novel joint reconstruction algorithm combining distributed compressed sensing with multiple ...
Jianning Wu, Jiajing Wang, Yun Ling
doaj   +1 more source

Design and Evaluation of 3D‐Printed Polylactic Acid Composites Reinforced with Biodegradable Bamboo Powder and Jute Powder

open access: yesAdvanced Engineering Materials, EarlyView.
The study investigates 3D‐printed polylactic acid (PLA) composites with biodegradable bamboo and jute powder fillers. Mechanical, thermal, structural properties, and rheological behavior are discussed to evaluate composite performance. Morphological characterization indicates uniform dispersion and adhesion of the fillers in the PLA matrix with the ...
Vimukthi Dananjaya   +4 more
wiley   +1 more source

Robust Detection of Random Events with Spatially Correlated Data in Wireless Sensor Networks via Distributed Compressive Sensing [PDF]

open access: yesarXiv, 2017
In this paper, we exploit the theory of compressive sensing to perform detection of a random source in a dense sensor network. When the sensors are densely deployed, observations at adjacent sensors are highly correlated while those corresponding to distant sensors are less correlated.
arxiv  

A Study on Thermal Expansion and Thermomechanical Behavior of Composite Metal Foams

open access: yesAdvanced Engineering Materials, EarlyView.
The coefficient of thermal expansion of steel–steel composite metal foam (S‐S CMF) is shown to be lower than that of bulk stainless steel while its performance under compression demonstrate excellent mechanical stability and strength at all temperatures with gradualsoftening from 400 to 600 °C.
Zubin Chacko   +2 more
wiley   +1 more source

Fabrication of Compositionally Graded NiTi Shape Memory Alloy Laminated Composites Through Hot Roll Bonding and its Characterization

open access: yesAdvanced Engineering Materials, EarlyView.
A novel technique for fabricating monolithic functionally graded NiTi shape memory alloy (SMA) laminated hybrid composite has been developed. An excellent metallurgical bonding can be established between two compositionally different NiTi SMAs through spark plasma sintering joining/diffusion bonding followed by hot roll bonding.
Soumya Sinha   +2 more
wiley   +1 more source

Low‐Velocity Penetration Impact Behavior of Triply Periodic Minimal Surface Strut‐Based Lattices

open access: yesAdvanced Engineering Materials, EarlyView.
Triply periodic minimal surface (TPMS)‐based lattices are gaining attention for their multifunctional properties in applications as aeronautics and automotive, which involve low‐velocity impact loading. This work evaluates the low‐velocity penetration impact behavior of five distinct TPMS architectures.
Lucía Doyle   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy