Results 171 to 180 of about 194,746 (328)
A new alloy‐oxide vertically aligned nanocomposite (VAN) thin film with two immiscible non‐noble metal elements of Co and Cu embedded in BaTiO3 (BTO) matrix is designed and fabricated, which presents interesting magnetic, ferroelectric, and optical properties.
Jijie Huang+7 more
wiley +1 more source
Low‐Loss Far‐Infrared Surface Phonon Polaritons in Suspended SrTiO3 Nanomembranes
The low‐loss, highly confined, and thickness‐tunable surface phonon polaritons are demonstrated in the far‐infrared regime within transferable freestanding SrTiO3 membranes, achieving high figures of merit comparable to the previous record values from the vdW materials.
Konnor Koons+8 more
wiley +1 more source
On the energy self-sustainability of IoT via distributed compressed sensing [PDF]
Wei Chen+3 more
openalex +1 more source
Iridium Oxide Inverse Opal Anodes with Tailored Porosity for Efficient PEM Electrolysis
The synthesis of Iridium‐based Inverse Opals (Ir‐IO) is reported as electrocatalyst for Proton exchange membrane water electrolysis (PEM‐WE). Using the developed protocol it produces highly porous materials consisting either of metallic, oxidic Iridium or a combination thereof with large surface areas.
Sebastian Möhle+2 more
wiley +1 more source
Backtracking based Joint-Sparse Signal Recovery for Distributed Compressive Sensing
Srinidhi Murali+3 more
openalex +1 more source
The metal–insulator transition temperature (TMI) is continuously tuned by the systematic change of relative thickness in VO2 and TiO2 films (tVO2/tTiO2${t_{{\mathrm{V}}{{\mathrm{O}}_2}}}/{t_{{\mathrm{Ti}}{{\mathrm{O}}_2}}}$) in freestanding TiO2/VO2/TiO2 tri‐layers.
Sungwon Lee+5 more
wiley +1 more source
A communication-efficient distributed deep learning remote sensing image change detection framework
With the introduction of deep learning methods, the computation required for remote sensing change detection has significantly increased, and distributed computing is applied to remote sensing change detection to improve computational efficiency. However,
Hongquan Cheng+4 more
doaj
The dynamic polarization reversal of coexisting normal and relaxor ferroelectrics in 1D TMAPbI₃ (tetramethylammonium, TMA) is deciphered through combined experimental and theoretical approaches. By bridging atomic‐scale motion, macroscopic polarization switching, and depolarization effects, a universal methodology is established to engineer next ...
Chen Xue+8 more
wiley +1 more source
High Thermoelectric Performance in Low‐Cost Cu8SiSxSe6‐x Argyrodite
This study discovers the great potential of Cu8SiSxSe6‐x argyrodites as new, low‐cost, Te‐free thermoelectric materials. The proposed defect scheme suppresses the phase transition, enhances the weighted mobility and optimizes the grain boundary contacts.
Taras Parashchuk+7 more
wiley +1 more source
Supercompliant Lattice Boosts n‐type AgSbTe2 Thermoelectrics
The supercompliant lattice design enables the first realization of n‐type electrical transport in AgSbTe2 by overcoming intrinsic electron‐killer defects and exceeding the doping limits imposed by the conventional Hume–Rothery rule. Accordingly, the best performance n‐type Ag0.8Na0.3Sb0.6Bi0.4Te2 sample achieves a low κ of 0.27 W·m−1·K−1 that ...
Ruoyan Li+15 more
wiley +1 more source