Results 141 to 150 of about 34,648 (287)

Improving Taxonomic Image-based Out-of-distribution Detection With DNA Barcodes

open access: yes2024 32nd European Signal Processing Conference (EUSIPCO)
Accepted to EUSIPCO ...
Impiö, Mikko, Raitoharju, Jenni
openaire   +2 more sources

Merging DNA metabarcoding and ecological network analysis to understand and build resilient terrestrial ecosystems [PDF]

open access: yes, 2016
Summary 1. Significant advances in both mathematical and molecular approaches in ecology offer unprecedented opportunities to describe and understand ecosystem functioning.
Evans, Darren M.   +6 more
core   +2 more sources

NNMT Orchestrates Metabolic‐Epigenetic Reprogramming to Drive Macrophage‐Myofibroblast Transition in Hypertrophic Scarring

open access: yesAdvanced Science, EarlyView.
In macrophage‐myofibroblast transition, upregulated NNMT depletes S‐Adenosylmethionine‌ (SAM) and nicotinamide adenine dinucleotide(NAD+), thereby triggering epigenetic reprogramming via Histone H3 Lysine 27 acetylation (H3K27ac) accumulation at the promoter region of master transcription factor Prrx1.
Xiwen Dong   +11 more
wiley   +1 more source

DNA barcoding is currently unreliable for species identification in most crayfishes

open access: yesEcology and Evolution
DNA barcoding is commonly used for species identification. Despite this, there has not been a comprehensive assessment of the utility of DNA barcoding in crayfishes (Decapoda: Astacidea).
Patrick F. Allison Jr   +3 more
doaj   +1 more source

EIF1AX Nucleolar Condensates Enhance Susceptibilities for the Management of Endometrial Cancer

open access: yesAdvanced Science, EarlyView.
This schematic illustrates the mechanism of a senolytic strategy in endometrial cancer. EIF1AX facilitates the incorporation of DDX21 into nucleolar condensates, an event that suppresses rDNA transcription and induces cellular senescence. The compound 2,5‐MeC exploits this pathway by promoting EIF1AX nucleolar translocation and condensate formation ...
Chengyu Lv   +8 more
wiley   +1 more source

Simple identification tools in FishBase [PDF]

open access: yes, 2010
Simple identification tools for fish species were included in the FishBase information system from its inception. Early tools made use of the relational model and characters like fin ray meristics. Soon pictures and drawings were added as a further help,
Atanacio, Rachek   +3 more
core   +1 more source

Annexin A13 Protects Against Acute Kidney Injury by Inactivating TGF‐β/Smad3 Signaling

open access: yesAdvanced Science, EarlyView.
ANXA13 is negatively regulated by Smad3 and exerts its protective role in AKI by inactivating TGF‐β/Smad3 signaling and Smad3‐p21 cell cycle arrest pathway through binding to TβRI, inhibiting the interaction between TβRI and TβRII, thereby suppressing TβRI phosporylation.
Jiaxiao Li   +12 more
wiley   +1 more source

Sabotaged Integral HSC Heterogeneity Underlies Essential Thrombocythemia Development

open access: yesAdvanced Science, EarlyView.
Single‐cell RNA sequencing (scRNA‐seq) maps how distinct driver mutations remodel hematopoietic stem cell (HSC) programs across essential thrombocythemia (ET). Comparative analysis uncovers both shared and subtype‐specific molecular signatures, identifies a triple‐negative (TN)‐associated HSC population enriched with malignant traits, and reveals the ...
Jingyuan Tong   +21 more
wiley   +1 more source

Integrated Transcriptomics Reveals Evolutionary Trajectories and Cell Density‐Dependent Mechanisms in Aldosterone‐Producing Adenomas

open access: yesAdvanced Science, EarlyView.
Aldosterone‐producing adenomas (APAs) develop via two distinct paths: directly from adrenal zona glomerulosa (zG) cells, or stepwise from zG cells through aldosterone‐producing micronodules (APMs) before progressing to APAs. Advanced single‐cell and spatial analyses identified distinct cell states linked to oxidative stress and cell–cell interactions ...
Zhuolun Sun   +7 more
wiley   +1 more source

Vitamin D Regulates Olfactory Function via Dual Transcriptional and mTOR‐Dependent Translational Control of Synaptic Proteins

open access: yesAdvanced Science, EarlyView.
Vitamin D (VitD) modulates olfactory function by remodeling dendrodendritic synapses in tufted cells through vitamin D receptor‐dependent transcriptional and translational mechanisms. VitD regulates synaptic protein translation partially via mTOR signaling.
Pengcheng Ren   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy