Results 241 to 250 of about 1,244,963 (314)

Additive Manufacturing of Gradient Stiffness Honeycombs Using Thermoplastic Polyurethane Composite Material Variations

open access: yesAdvanced Engineering Materials, EarlyView.
By combining porous, solid, and carbon fiber‐reinforced thermoplastic polyurethane within a single 3D printed honeycomb structure, this current work achieved precise control over spatial stiffness while ensuring strong interlayer adhesion. The findings demonstrate enhanced energy absorption and densification strain, outperforming traditional uniform ...
Savvas Koltsakidis   +2 more
wiley   +1 more source

Enabling Digital Continuity in Virtual Manufacturing for Eco‐Efficiency Assessment of Lightweight Structures by Means of a Domain‐Specific Structural Mechanics Language: Requirements, Idea and Proof of Concept

open access: yesAdvanced Engineering Materials, EarlyView.
This article presents a solver‐agnostic domain‐specific language (DSL) for computational structural mechanics that strengthens interoperability in virtual product development. Using a hierarchical data model, the DSL enables seamless exchange between diverse simulation tools and numerical methods.
Martin Rädel   +3 more
wiley   +1 more source

Rheocasting versus Die Casting: An Insight into the Low‐Cycle Fatigue Behavior of AlSi7Mg0.6

open access: yesAdvanced Engineering Materials, EarlyView.
The study compares rheocast lightweight components with high‐pressure die cast materials regarding microstructure and fatigue behavior. Rheocast process offers higher efficiency due to lower casting temperatures. Despite some microstructural differences, both processes show similar strengths (yield strength 125 MPa, tensile strength 240 MPa).
Julia Richter   +4 more
wiley   +1 more source

Surgical technique´s influence on overall survival, disease free interval and new lesion development interval in dogs with mammary tumors

open access: gold, 2013
Rodrigo dos Santos Horta   +5 more
openalex   +1 more source

Home - About - Disclaimer - Privacy