Results 1 to 10 of about 9,423,140 (336)
Domination Number, Independent Domination Number and 2-Independence Number in Trees
For a graph G, let γ(G) be the domination number, i(G) be the independent domination number and β2(G) be the 2-independence number. In this paper, we prove that for any tree T of order n ≥ 2, 4β2(T) − 3γ(T) ≥ 3i(T), and we characterize all trees ...
Dehgardi Nasrin+4 more
doaj +3 more sources
On the $ \{2\} $-domination number of graphs
Let $ G $ be a nontrivial graph and $ k\geq 1 $ an integer. Given a vector of nonnegative integers $ w = (w_0, \ldots, w_k) $, a function $ f: V(G)\rightarrow \{0, \ldots, k\} $ is a $ w $-dominating function on $ G $ if $ f(N(v))\geq w_i $ for every $ v\
A. Cabrera-Martínez, A. C. Peiró
semanticscholar +5 more sources
Graphs with equal domination and independent domination numbers [PDF]
Let γ(G) and i(G) denote the domination number and independent domination number of a graph G. In this article, we establish a sufficient condition for a graph G to satisfy which yields some of the well known classical theorems as corollaries.
Purnima Gupta, Rajesh Singh, S. Arumugam
doaj +3 more sources
Isolation Number versus Domination Number of Trees
If G=(VG,EG) is a graph of order n, we call S⊆VG an isolating set if the graph induced by VG−NG[S] contains no edges. The minimum cardinality of an isolating set of G is called the isolation number of G, and it is denoted by ι(G).
Magdalena Lemańska+3 more
doaj +2 more sources
On the equality of domination number and 2-domination number
The 2-domination number $ _2(G)$ of a graph $G$ is the minimum cardinality of a set $ D \subseteq V(G) $ for which every vertex outside $ D $ is adjacent to at least two vertices in $ D $. Clearly, $ _2(G) $ cannot be smaller than the domination number $ (G) $. We consider a large class of graphs and characterize those members which satisfy $ _2=
Gülnaz Boruzanlı Ekinci+1 more
doaj +5 more sources
The difference between the domination number and the minus domination number of a cubic graph
AbstractThe closed neighborhood of a vertex subset S of a graph G = (V, E), denoted as N[S], is defined as the union of S and the set of all the vertices adjacent to some vertex of S. A dominating set of a graph G = (V, E) is defined as a set S of vertices such that N[S] = V.
Xiaofan Yang+3 more
openalex +3 more sources
Maker–Breaker Domination Number [PDF]
The Maker–Breaker domination game is played on a graph G by Dominator and Staller. The players alternatively select a vertex of G that was not yet chosen in the course of the game.
Valentin Gledel+2 more
semanticscholar +5 more sources
Bounds on the Locating-Domination Number and Differentiating-Total Domination Number in Trees
A subset S of vertices in a graph G = (V,E) is a dominating set of G if every vertex in V − S has a neighbor in S, and is a total dominating set if every vertex in V has a neighbor in S.
Rad Nader Jafari, Rahbani Hadi
doaj +3 more sources
Bounds on the Exponential Domination Number
As a natural variant of domination in graphs, Dankelmann et al. [Domination with exponential decay, Discrete Math. 309 (2009) 5877-5883] introduce exponential domination, where vertices are considered to have some dominating power that decreases exponentially with the distance, and the dominated vertices have to accumulate a sufficient amount of this ...
Stéphane Bessy+2 more
openalex +6 more sources
Total domination number of middle graphs [PDF]
A total dominating set of a graph G with no isolated vertices is a subset S of the vertex set such that every vertex of G is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a total dominating set of G.
Farshad Kazemnejad+3 more
semanticscholar +1 more source