Acyclic and star coloring parameters of fractal cubic networks. [PDF]
Renuga C +3 more
europepmc +1 more source
Molecular Characteristics of Epidemiologically Successful <i>Salmonella</i> Enteritidis in Poland. [PDF]
Kamińska E +6 more
europepmc +1 more source
Genome-wide chromatin accessibility and selective signals of meat rabbits reveal key Cis-regulatory elements and variants during postnatal development of skeletal muscles in rabbits. [PDF]
Du K +6 more
europepmc +1 more source
Related searches:
Trees with Equal Domination and Restrained Domination Numbers
Journal of Global Optimization, 2006zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Dankelmann, Peter +3 more
openaire +1 more source
Split domination number of divisible dominating graphs
Journal of Discrete Mathematical Sciences and Cryptography, 2020A graph G is a divisible dominating graph if the vertices are labeled with positive integers d and n except 0, such that the vertex labeled with n is adjacent to the vertex named with d if and only...
S. Amutha +3 more
openaire +1 more source
On trees with domination number equal to edge-vertex roman domination number
Discrete Mathematics, Algorithms and Applications, 2020An edge-vertex Roman dominating function (or just ev-RDF) of a graph [Formula: see text] is a function [Formula: see text] such that for each vertex [Formula: see text] either [Formula: see text] where [Formula: see text] is incident with [Formula: see text] or there exists an edge [Formula: see text] adjacent to [Formula: see text] such that [Formula:
Naresh Kumar, H., Venkatakrishnan, Y. B.
openaire +2 more sources
The Sierpiński domination number
Ars Mathematica ContemporaneaLet $G$ and $H$ be graphs and let $f \colon V(G)\rightarrow V(H)$ be a function. The Sierpiński product of $G$ and $H$ with respect to $f$, denoted by $G \otimes _f H$, is defined as the graph on the vertex set $V(G)\times V(H)$, consisting of $|V(G)|$ copies of $H$; for every edge $gg'$ of $G$ there is an edge between copies $gH$ and $g'H$ of $H ...
Henning, Michael A. +3 more
openaire +2 more sources
Cubic Graphs with Large Ratio of Independent Domination Number to Domination Number
Graphs and Combinatorics, 2015zbMATH Open Web Interface contents unavailable due to conflicting licenses.
O, Suil, West, Douglas B.
openaire +2 more sources
Trees with independent Roman domination number twice the independent domination number
Discrete Mathematics, Algorithms and Applications, 2015A Roman dominating function (RDF) on a graph [Formula: see text] is a function [Formula: see text] satisfying the condition that every vertex [Formula: see text] for which [Formula: see text] is adjacent to at least one vertex [Formula: see text] for which [Formula: see text].
Chellali, Mustapha, Rad, Nader Jafari
openaire +2 more sources

