Results 51 to 60 of about 9,917,456 (366)
Isolate and independent domination number of some classes of graphs
In this paper we compute isolate domination number and independent domination number of some well known classes of graphs. Also a counter example is provided, which disprove the result on independent domination for Euler Totient Cayley graph proved by ...
Shilpa T. Bhangale, Madhukar M. Pawar
doaj +1 more source
On the Total Outer k-Independent Domination Number of Graphs
A set of vertices of a graph G is a total dominating set if every vertex of G is adjacent to at least one vertex in such a set. We say that a total dominating set D is a total outer k-independent dominating set of G if the maximum degree of the subgraph ...
A. Cabrera-Martínez +3 more
semanticscholar +1 more source
Reducing the domination number of graphs via edge contractions [PDF]
In this paper, we study the following problem: given a connected graph $G$, can we reduce the domination number of $G$ by at least one using $k$ edge contractions, for some fixed integer $k \geq 0$?
Esther Galby, Paloma T. Lima, B. Ries
semanticscholar +1 more source
On graphs with equal domination and connected domination numbers
A subset \(S\) of the vertex set \(V(G)\) of a graph \(G\) is called dominating in \(G\), if each vertex of \(G\) either is in \(S\), or is adjacent to a vertex of \(S\). The minimum number of vertices of a dominating set in \(G\) is the dominating number \(\gamma(G)\) of \(G\).
Subramanian Arumugam, J. Paulraj Joseph
openaire +2 more sources
Equitable eccentric domination in graphs
In this paper, we define equitable eccentric domination in graphs. An eccentric dominating set S ⊆ V (G) of a graph G(V, E) is called an equitable eccentric dominating set if for every v ∈ V − S there exist at least one vertex u ∈ V such that |d(v) − d(u)
A Riyaz Ur Rehman, A Mohamed Ismayil
doaj +1 more source
The 3-Rainbow Domination Number of the Cartesian Product of Cycles
We have studied the k-rainbow domination number of C n □ C m for k ≥ 4 (Gao et al. 2019), in which we present the 3-rainbow domination number of C n □ C m , which should be bounded above by the four-rainbow domination number of C n □ C m .
Hong Gao, Changqing Xi, Yuansheng Yang
semanticscholar +1 more source
Domination cover number of graphs [PDF]
A set [Formula: see text] for the graph [Formula: see text] is called a dominating set if any vertex [Formula: see text] has at least one neighbor in [Formula: see text]. Fomin et al. [Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications, ACM Transactions on Algorithms (TALG) 5(1) (2008) 9] gave an algorithm ...
M. Alambardar Meybodi +3 more
openaire +3 more sources
Characterization of Upper Detour Monophonic Domination Number
This paper introduces the concept of \textit{upper detour monophonic domination number} of a graph. For a connected graph $G$ with vertex set $V(G)$, a set $M\subseteq V(G)$ is called minimal detour monophonic dominating set, if no proper subset of $M ...
M. Mohammed Abdul Khayyoom
doaj +1 more source
All graphs with paired-domination number two less than their order [PDF]
Let \(G=(V,E)\) be a graph with no isolated vertices. A set \(S\subseteq V\) is a paired-dominating set of \(G\) if every vertex not in \(S\) is adjacent with some vertex in \(S\) and the subgraph induced by \(S\) contains a perfect matching.
Włodzimierz Ulatowski
doaj +1 more source
A note on the bounds of Roman domination numbers
Let $G$ be a graph and $f: V(G) \rightarrow \{0,1,2\}$ be a mapping. $f$ is said to be a Roman dominating function of $G$ if every vertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex $v$ for which $f(v)=2$.
Zepeng Li
doaj +1 more source

