Results 211 to 220 of about 2,392,562 (320)
Polyferrocene block copolymers are synthesized and assembled into micron‐sized polymer cubosomes with double diamond lattice and pore diameter of ≈30 nm. The ferrocene functionality is retained within the polymer cubosome wall as demonstrated on supramolecular modification, and oxidative disassembly.
Chin Ken Wong +4 more
wiley +1 more source
An innovative medium entropy alloy (MEA) composite material was fabricated via micro laser powder bed fusion (μ‐LPBF) with appropriate nano‐ceramic particles doping and exhibited markedly improved overall performance, including synergistically enhanced strength and ductility, increased hardness and compressive strength, improved wear resistance and ...
Zhonglin Shen, Mingwang Fu
wiley +1 more source
Enhanced Light-Matter Interaction in Porous Silicon Microcavities Structurally Optimized Using Theoretical Simulation and Experimental Validation. [PDF]
Granizo E +5 more
europepmc +1 more source
Dual‐cation site engineering unlocks stable and fast sodium storage in Na4VMn(PO4)3 cathodes. Li+ at Na2 suppresses Jahn‐Teller distortion, while K+ at Na1 expands ion channels, enabling synchronized V/Mn redox and quasi‐single‐phase kinetics. This atomic‐level strategy achieves ultralong cycling stability, high‐rate capability, and full cell viability
Jiaze Sun +8 more
wiley +1 more source
Numerical Simulation and Optimization of Furnace Roll Casting Production Technology. [PDF]
Bašistová M +4 more
europepmc +1 more source
Inspired by the skin‐toughening mechanism of marine sponges, an ion‐orchestrated structural engineering strategy is proposed to regulate the surface microstructure of hydrogel coatings, enabling the in situ formation of a robust armor layer that enhances mechanical integrity and provides multifunctional protection by suppressing fouling attachment and ...
Wenshuai Yang +11 more
wiley +1 more source
Optimization of Plasma-Sprayed CeScYSZ Thermal Barrier Coating Parameters and Investigation of Their CMAS Corrosion Resistance. [PDF]
Li R, Wang K, Li Z.
europepmc +1 more source
High‐energy electron impact in plasma catalysis often causes excessive dissociation of active intermediates, limiting C2+ product selectivity. To address this challenge, a bio‐inspired stoma‐shell nanoarchitecture is designed to decouple electron impact from catalytic reaction zones.
Nan Zou +5 more
wiley +1 more source
Editorial for Special Issue "Materials Frontiers for Solid Oxide Fuel Cells (SOFCs): Structure-Performance Correlation". [PDF]
Dell'Era A, Bocci E.
europepmc +1 more source

