Results 91 to 100 of about 43,328 (293)

Investigation of impact of kesterites as hole transport layer on (FA)2BiCuI6 based ecofriendly double perovskite solar cell to obtain optimized PCE above 25%

open access: yesResults in Optics
This paper presents a detailed study of double perovskite (FA)2BiCuI6 based perovskite solar cells(PSC) using different kesterites as hole transport layers (HTL) and titanium-based electron transport layers (ETL).
Nishi Bala, Sanjeev Kumar Mallik
doaj   +1 more source

Tailoring the Properties of Functional Materials With N‐Oxides

open access: yesAdvanced Functional Materials, EarlyView.
The properties of materials bearing N‐oxide groups are often dominated by the polar N+─O− bond. It provides hydrophilicity, selective ion‐binding, electric conductivity, or antifouling properties. Many of the underlying mechanisms have only recently been discovered, and the interest in N‐oxide materials is rapidly growing.
Timo Friedrich   +5 more
wiley   +1 more source

Ultrahigh‐Yield, Multifunctional, and High‐Performance Organic Memory for Seamless In‐Sensor Computing Operation

open access: yesAdvanced Functional Materials, EarlyView.
Molecular engineering of a nonconjugated radical polymer enables a significant enhancement of the glass transition temperature. The amorphous nature and tunability of the polymer, arising from its nonconjugated backbone, facilitates the fabrication of organic memristive devices with an exceptionally high yield (>95%), as well as substantial ...
Daeun Kim   +14 more
wiley   +1 more source

Growth of Millimeter‐Sized BaTaO2N Single Crystals by an NH3‐Assisted BaCl2 Flux Method

open access: yesAdvanced Functional Materials, EarlyView.
Millimeter‐sized BaTaO2N single crystals are successfully grown from a BaCl2 flux under NH3 flow. Their comprehensive characterization, including dielectric properties, is demonstrated, and the possible growth mechanisms are discussed. Abstract Perovskite‐type oxynitrides have attracted considerable attention due to their excellent photocatalytic ...
Ginji Harada   +2 more
wiley   +1 more source

Reducing Open‐Circuit Voltage Losses in Wide‐Bandgap FAPbBr3 Perovskite Solar Cells for Continuous Unassisted Light‐Driven Water Splitting

open access: yesAdvanced Functional Materials, EarlyView.
The combination of formamidinium thiocyanate and 1,3‐propane diammonium iodide for bulk and top‐surface passivation, and a ternary fullerene blend to improve energy band alignment, suppresses energy losses in wide‐bandgap FAPbBr3 perovskite solar cells.
Laura Bellini   +9 more
wiley   +1 more source

Lead-Free Halide Double Perovskite Materials: A New Superstar Toward Green and Stable Optoelectronic Applications

open access: yesNano-Micro Letters, 2019
Lead-based halide perovskites have emerged as excellent semiconductors for a broad range of optoelectronic applications, such as photovoltaics, lighting, lasing and photon detection.
Liang Chu   +7 more
doaj   +1 more source

High‐Entropy Perovskite Nanofibers for Bifunctional Air Electrodes in Reversible Protonic Ceramic Electrochemical Cells

open access: yesAdvanced Functional Materials, EarlyView.
High‐entropy perovskite nanofibers serve as robust and active bifunctional air electrodes in reversible protonic ceramic electrochemical cells. Their compositional complexity stabilizes the lattice, enriches oxygen vacancies, and accelerates surface exchange.
Hyeonggeun Kim   +4 more
wiley   +1 more source

High‐Rate FA‐Based Co‐Evaporated Perovskites: Understanding Rate Limitations and Practical Considerations to Overcome Their Impact

open access: yesAdvanced Functional Materials, EarlyView.
Vacuum‐based deposition is promising for perovskite solar cells to be successfully commercialized. However, co‐evaporation, the most common vapor phase deposition technique, suffers from very low deposition rates. In this work, we reveal that high deposition rates can lead to carbon flakes depositing into the perovskite absorber layers due to material ...
Thomas Feeney   +13 more
wiley   +1 more source

Ab initio studies of structural instabilities in magnesium silicate perovskite

open access: yes, 1995
Density-functional simulations are used to calculate structural properties and high-symmetry phonons of the hypothetical cubic phase, the stable orthorhombic phase and an intermediate tetragonal phase of magnesium silicate perovskite.
Ackland, G. J., Warren, M. C.
core   +1 more source

Epitaxial integration of perovskite based double-gate field effect transistor with silicon

open access: yesAPL Materials
Silicon-based semiconductors have driven significant advancements following Moore’s law but are now approaching the physical limits. To overcome these challenges, integrating new materials with silicon is emerging as a promising alternative. In this work,
Seonghyeon Kim   +6 more
doaj   +1 more source

Home - About - Disclaimer - Privacy