Results 101 to 110 of about 43,328 (293)
Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha +18 more
wiley +1 more source
Cs2NaInCl6 double perovskites, which have excellent photoelectric conversion properties and are non-toxic and lead-free, have recently gained significant attention.
Keita Tosa +4 more
doaj +1 more source
Purcell‐Enhanced Spectrally Precise Emission in Dual‐Microcavity Organic Light‐Emitting Diodes
Spectrally precise emission from broadband organic light‐emitting diodes is realized via a dual‐microcavity strategy. This architecture achieves narrowband emission (full width at half maximum, FWHM = 21 nm) with ultrapure color approaching BT.2020 by enhancing the Purcell effect via coupling of excitons with dual‐microcavity resonance.
Jun Yong Kim +3 more
wiley +1 more source
Structural and Correlation Effects in the Itinerant Insulating Antiferromagnetic Perovskite NaOsO3
The orthorhombic perovskite NaOsO3 undergoes a continuous metal-insulator transition (MIT), accompanied by antiferromagnetic (AFM) order at T_N=410 K, suggested to be an example of the rare Slater (itinerant) MIT. We study this system using ab initio and
Jung, Myung-Chul +3 more
core +1 more source
Colloidal Crack Sintering Lithography for Light‐Induced Patterning of Particle Assemblies
Colloidal crack sintering lithography (CCSL) is a microfabrication technique that uses light‐induced photothermal heating to trigger sintering and controlled cracking in polymer colloidal assemblies. Local structural changes generate microchannels and patterns, enabling direct writing of diverse topographic motifs.
Marius Schoettle +2 more
wiley +1 more source
Rational design and optimization of structural and electronic properties in composite materials are effective strategies to enhance the electrocatalytic oxygen reduction reaction (ORR) activity of transition metal-based perovskites.
Daryoush Sanaei +7 more
doaj +1 more source
A spatiotemporal plasma–mediated laser processing approach is developed to fabricate ultrahigh–aspect ratio nanochannel arrays and corresponding perovskite nanowire arrays within transparent materials for optoelectronics devices. The laser‐fabricated nanochannels serve as templates for controlled perovskite infiltration and crystallization, enabling ...
Taijin Wang +3 more
wiley +1 more source
Lead halide perovskite nanocrystals are promising scintillators but suffer from reabsorption losses and limited compatibility with high‐Z additives. Hybridization of CsPbBr3 nanocrystals with PbBr2‐passivated HfO2 nanoparticle sensitizers, achieved during or after synthesis, produces stable composites with maintained optical quality, improved ...
Francesco Bruni +17 more
wiley +1 more source
Cs2AgInCl6 belongs to the family of lead-free halide double perovskites. Lead-free halide double perovskite appears as a viable contender for scintillator applications due to its inexpensive production costs, low intrinsic trap density, and nanosecond ...
Hassan Siddique
doaj +1 more source
Selection Strategies for Flexible Pressure Sensor Electrode Materials Toward Ultrafast Response
This study reveals, for the first time, how the electrode–organic interface governs the temporal performance of flexible pressure sensors. By pairing high‐conductivity CVD PEDOT with commonly used metal electrodes, the authors demonstrate that interfacial energy alignment dictates microsecond‐scale response, providing a straightforward design strategy ...
Jinwook Baek +11 more
wiley +1 more source

