Results 131 to 140 of about 11,753,787 (293)

DOWNLOAD FRONT MATTER

open access: yesJurnal Ilmiah Islam Futura, 2017
front matter
doaj   +1 more source

Endometrial Assembloid Model Reveals Endometrial Gland Development Regulation by Estradiol‐Driven WNT7B Suppression

open access: yesAdvanced Science, EarlyView.
This study developed a 3D endometrial assembloid model to study how uterine glands form and develop. They discovered key interactions between different cell types and identified WNT7B as a regulator controlled by estradiol‐mediated TGFβ1‐VDR interaction.
Xintong Li   +12 more
wiley   +1 more source

Global Evidence of the Unimodal Response of Ecosystem Respiration to Soil Moisture

open access: yesAdvanced Science, EarlyView.
Using global eddy covariance observations and a field experiment, this paper provides compelling evidence for the widespread unimodal relationship between soil moisture and ecosystem respiration and its water adaptation. Such knowledge facilitates understanding of soil moisture in affecting respiratory carbon emissions and has the potential to improve ...
Jinlong Peng   +9 more
wiley   +1 more source

Download the Whole Issue

open access: yesCoSMO, 2023
Andrea Brondino, John Greaney
doaj   +1 more source

Wedelolactone, a Novel TLR2 Agonist, Promotes Neutrophil Differentiation and Ameliorates Neutropenia: A Multi‐Omics Approach to Unravel the Mechanism

open access: yesAdvanced Science, EarlyView.
Wedelolactone (WED), a natural TLR2 agonist, promotes neutrophil differentiation and enhances bactericidal function, offering a potential therapeutic strategy for neutropenia. Using a multi‐omics approach, this study reveals that WED activates the TLR2/MEK/ERK pathway, upregulating key transcription factors (PU.1, CEBPβ) to drive neutrophil development.
Long Wang   +16 more
wiley   +1 more source

NAD⁺ Reduction in Glutamatergic Neurons Induces Lipid Catabolism and Neuroinflammation in the Brain via SARM1

open access: yesAdvanced Science, EarlyView.
NAD⁺ homeostasis maintains neuronal integrity through opposing actions of NMNAT2 and SARM1. Loss of NMNAT2 in glutamatergic neurons reprograms cortical metabolism from glucose to lipid catabolism, depletes lipid stores, and triggers inflammation and neurodegeneration.
Zhen‐Xian Niou   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy