Results 201 to 210 of about 1,771,926 (270)

Degradable Magnetic Composites from Recycled NdFeB Magnets for Soft Actuation and Sensing

open access: yesAdvanced Robotics Research, EarlyView.
This work presents a degradable soft magnetic composite made from recycled NdFeB particles embedded in a gelatin‐based organogel. The material is processed into magnetic sensors and soft robotic components, which can later be dissolved in a green solvent to recover NdFeB magnetic particles.
Muhammad Bilal Khan   +14 more
wiley   +1 more source

Edible Pouch Motors

open access: yesAdvanced Robotics Research, EarlyView.
Edible robotics is an emerging field that leverages edible materials to construct robotic systems. This study presents a method to create thin, lightweight, yet powerful edible soft actuators, namely edible pouch motors. The successful operation of these edible actuators and grippers renders their potential to advance future developments in edible ...
Keigo Takahashi   +3 more
wiley   +1 more source

ChicGrasp: Imitation‐Learning‐Based Customized Dual‐Jaw Gripper Control for Manipulation of Delicate, Irregular Bio‐Products

open access: yesAdvanced Robotics Research, EarlyView.
Automated poultry processing lines still rely on humans to lift slippery, easily bruised carcasses onto a shackle conveyor. Deformability, anatomical variance, and hygiene rules make conventional suction and scripted motions unreliable. We present ChicGrasp, an end‐to‐end hardware‐software co‐designed imitation learning framework, to offer a ...
Amirreza Davar   +8 more
wiley   +1 more source

Vm–MSI: a Vancomycin–Antimicrobial Peptide Conjugate Combating Resistant Bacteria and Broadening the Antimicrobial Spectrum

open access: yesAdvanced Science, EarlyView.
A series of vancomycin‐antimicrobial peptide conjugates is synthesized and evaluated to identify the optimal combination. Vm‐MSI, selected from multiple candidates, exhibited potent activity against vancomycin‐resistant and Gram‐negative bacteria by disrupting membranes and inducing oxidative stress, thereby expanding vancomycin's antibacterial ...
Shuangyu Li   +7 more
wiley   +1 more source

Sleep Alters the Velocity of Physiological Brain Pulsations in Humans

open access: yesAdvanced Science, EarlyView.
Sleep alters I/CSF oscillatory flow, driven by increased respiratory (29%) and vasomotor pulsation (21%) velocities, while cardiovascular pulsations decreased by (22%). Velocity is quantified using optical flow analysis of MREG data. Spectral power increases alongside these pulsations (spatial correlation, r = 0.35 and r = 0.39, respectively ...
Ahmed Elabasy   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy