Results 131 to 140 of about 40,019 (337)

Light‐Controlled Exposure of Cancer Cells to Reactive Oxygen Species Using Organic Semiconductor Thin Films

open access: yesAdvanced Materials Interfaces, EarlyView.
Spin‐coated films of the conjugated polymer F8T2 (poly (9,9‐dioctylfluorene‐alt‐bithiophene)) generate superoxide at the film‐medium interface, enabling precise delivery of reactive oxygen species (ROS) as visible‐light “ROS patches.” Coated surfaces drive rapid, localised cytotoxicity in MCF7 cancer monolayers under white light, providing a reagent ...
Joe Kaye   +8 more
wiley   +1 more source

Utility of drug provocation tests in the evaluation of quinolone hypersensitivity reactions [PDF]

open access: bronze, 2020
Anca Mirela Chiriac   +6 more
openalex   +1 more source

Implantable Microarray Patch: Engineering at the Nano and Macro Scale for Sustained Therapeutic Release via Synthetic Biodegradable Polymers

open access: yesAdvanced Materials Technologies, Volume 10, Issue 6, March 18, 2025.
This review focuses on the application of synthetic biodegradable microarray patches (MAPs) in sustained drug delivery. Compared to conventional MAPs which release drugs into the skin in an immediate manner, these implantable MAPs release drugs into skin microcirculation gradually as the biodegradable polymers degrade, thus offering sustained release ...
Li Zhao   +6 more
wiley   +1 more source

Severe exacerbation of facial dermatitis with swelling following introduction of abrocitinib in a patient with atopic dermatitis

open access: yesAllergy, Asthma & Clinical Immunology
Background Abrocitinib, an oral small-molecule Janus kinase 1 (JAK1) inhibitor, has been widely accepted for the treatment of moderate-to-severe atopic dermatitis (AD).
Shirui Chen, Chongtu Yang, Yonghong Lu
doaj   +1 more source

Nanoporous Microelectrodes for Neural Electrophysiology Recordings in Organotypic Culture

open access: yesAdvanced Materials Technologies, EarlyView.
The highly porous microelectrodes have been designed and printed on culture membranes, allowing to record electrophysiological neural activity for rodent brain slices. To keep the biocompatible nanoporous structure, the microelectrodes and insulative layer are fabricated on the bottom of culture membranes with only small connector pads added on the top.
Petro Lutsyk   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy