Results 141 to 150 of about 9,770,479 (402)

PARP inhibitors elicit distinct transcriptional programs in homologous recombination competent castration‐resistant prostate cancer

open access: yesMolecular Oncology, EarlyView.
PARP inhibitors are used to treat a small subset of prostate cancer patients. These studies reveal that PARP1 activity and expression are different between European American and African American prostate cancer tissue samples. Additionally, different PARP inhibitors cause unique and overlapping transcriptional changes, notably, p53 pathway upregulation.
Moriah L. Cunningham   +21 more
wiley   +1 more source

Bridging the gap: Multi‐stakeholder perspectives of molecular diagnostics in oncology

open access: yesMolecular Oncology, EarlyView.
Although molecular diagnostics is transforming cancer care, implementing novel technologies remains challenging. This study identifies unmet needs and technology requirements through a two‐step stakeholder involvement. Liquid biopsies for monitoring applications and predictive biomarker testing emerge as key unmet needs. Technology requirements vary by
Jorine Arnouts   +8 more
wiley   +1 more source

Adenosine‐to‐inosine editing of miR‐200b‐3p is associated with the progression of high‐grade serous ovarian cancer

open access: yesMolecular Oncology, EarlyView.
A‐to‐I editing of miRNAs, particularly miR‐200b‐3p, contributes to HGSOC progression by enhancing cancer cell proliferation, migration and 3D growth. The edited form is linked to poorer patient survival and the identification of novel molecular targets.
Magdalena Niemira   +14 more
wiley   +1 more source

Modeling hepatic fibrosis in TP53 knockout iPSC‐derived human liver organoids

open access: yesMolecular Oncology, EarlyView.
This study developed iPSC‐derived human liver organoids with TP53 gene knockout to model human liver fibrosis. These organoids showed elevated myofibroblast activation, early disease markers, and advanced fibrotic hallmarks. The use of profibrotic differentiation medium further amplified the fibrotic signature seen in the organoids.
Mustafa Karabicici   +8 more
wiley   +1 more source

Multi‐omic profiling of squamous cell lung cancer identifies metabolites and related genes associated with squamous cell carcinoma

open access: yesMolecular Oncology, EarlyView.
Using multi‐omic characterization, we aimed to identify key regulators specific to squamous cell lung carcinoma (SqCC). SqCC‐specific differentially expressed genes were integrated with metabolics data. High expression of the creatine transporter SLC6A8, along with elevated creatine levels, appeared to be a distinct metabolic feature of SqCC.
Johan Staaf   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy