Results 251 to 260 of about 1,787,106 (336)

Femtosecond Single‐ and Double‐Pulse Fabrication of Periodic Nanostructures on Stainless Steel for Surface‐Enhanced Raman Spectroscopy

open access: yesAdvanced Engineering Materials, EarlyView.
Periodic submicron features are fabricated on 304 stainless steel using single and double femtosecond laser pulses. By adjusting polarization, fluence, and inter‐pulse delay, 1D and 2D nanostructures are formed. Enhanced hydrophobicity and dense surface‐enhanced Raman spectroscopy hotspots enable analyte detection down to 10−10 M with good ...
Balaji Baskar   +3 more
wiley   +1 more source

Preparation and Thermal Modification of Disentangled Ultrahigh‐Molecular‐Weight Polyethylene Particles for Powder‐Based Additive Manufacturing

open access: yesAdvanced Engineering Materials, EarlyView.
Ultrahigh‐molecular‐weight polyethylene powders (<≈40 μm) with a bulk density of 260 g L−1 are prepared from a silica supported bisimine pyridine iron catalyst. The nascent product is disentangled and can be thermally densified without loss of its low viscosity.
Adrian Vaghar   +4 more
wiley   +1 more source

Mesoporous Silica Microspheres by Super‐Fast Alkaline Etching of Micrometer‐Sized Stöber Particles

open access: yesAdvanced Engineering Materials, EarlyView.
Microscale silica particles are prepared along with a modified, scalable Stöber synthesis using the continuous addition of tetraethoxy silane to an ethanolic solution of ammonia with KCl. Etching with hydroxide ions at 95 °C gave porous analogs within minutes. Monodisperse particles are isolable in high yield after precipitation in ethanol.
Adrian Vaghar   +2 more
wiley   +1 more source

Key Trends and Insights in Smart Polymeric Skin Wearable Patches

open access: yesAdvanced Engineering Materials, EarlyView.
Intelligent polymers, which respond to various physical and biological stimuli, are explored for the development of skin wearable patches in biomedical applications. Smart polymers, also known as intelligent or stimuli‐responsive polymers, play a crucial role in the development of advanced wearable patches due to their versatility and softness.
Sergio J. Peñas‐Núñez   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy