Results 221 to 230 of about 433,164 (296)

Carbon Contacts to Proteins Enable Robust, Biocompatible Electronic Junctions with Near‐Activation‐less Conduction Down to 10 K

open access: yesAdvanced Functional Materials, EarlyView.
A robust solid‐state protein junction with a semi‐transparent eC/Au electrode allows photoexcitation of the bacterio‐rhodopsin, bR layer, to isomerize the bR retinal. The resulting photo‐response shows the protein is functional in the solid‐state junction.
Shailendra K. Saxena   +5 more
wiley   +1 more source

Mechanically Stable and Tunable Photoactivated Peptide‐Based Hydrogels for Soft Tissue Adhesion

open access: yesAdvanced Functional Materials, EarlyView.
A collagen‐like peptide hydrogel platform is developed using supramolecular self‐assembly and light‐triggered crosslinking. It creates mechanically stable, tunable hydrogels with cytocompatibility and biodegradability, making them potential soft tissue adhesives.
Alex Ross   +8 more
wiley   +1 more source

Nucleation‐Controlled Reconstruction of CuOx for Selective CO2 Electroreduction

open access: yesAdvanced Functional Materials, EarlyView.
The ratio of oxygen vacancies (Ov) and exposed Cu2O (111)/(200) of CuOx precatalyst is modulated by nucleation control of Cu(OH)2 precursor. Low Ov ratio and high ratio of Cu2O (111)/(200) in slow‐nucleated CuOx reconstructs to high‐coordinated oxide‐derived copper (OD‐Cu) during electrochemical CO2 reduction reaction (CO2RR) and exhibits enhanced ...
Ying Ying Ch'ng   +14 more
wiley   +1 more source

Dual‐Site Ru Single‐Atoms and RuP Nanoclusters on N, P, and B Co‐Doped Porous Carbon for Efficient Alkaline HER and AEM Water Electrolysis

open access: yesAdvanced Functional Materials, EarlyView.
Ru single atoms and RuP nanoclusters are co‐anchored in N, P, and B co‐doped porous carbon nanospheres via in situ carbonization/phosphidation of a boronate polymer precursor. RuP activates water, while nearby Ru single atoms accelerate H2 formation through H* transfer. The catalyst delivers low overpotential and high durability in alkaline HER and AEM
Xiaohong Wang   +13 more
wiley   +1 more source

Electrocatalytic Reduction of CO2 to Ethylene: Catalyst Design and Synchrotron‐Based Characterizations

open access: yesAdvanced Functional Materials, EarlyView.
This review evaluates strategies for electrochemical CO2 reduction to ethylene, focusing on copper‐based catalyst design and microenvironment modulation to achieve industrial‐grade performance. By leveraging operando synchrotron‐based characterizations, we provide a multiscale understanding of dynamic structural transformations and key reaction ...
Meng Zhang, Zuolong Chen, Yimin A. Wu
wiley   +1 more source

Home - About - Disclaimer - Privacy