Results 201 to 210 of about 41,593 (356)

Patient‐Derived 3D Bioprinted Cardiac Organoid Constructs Reveal Key Pathological Features of Duchenne Muscular Dystrophy

open access: yesAdvanced Healthcare Materials, EarlyView.
Patient‐derived cardiac organoids reveal key features of Duchenne muscular dystrophy cardiomyopathy, including apoptosis, oxidative stress, calcium handling defects, and mechanical remodeling. By integrating organoids into alginate–gelatin bioprinted constructs, disease phenotypes are organized into scalable 3D cardiac tissues displaying extracellular ...
Vittoria Marini   +15 more
wiley   +1 more source

Peptomer Linkers Enable Kinetic Control over Co‐Delivery of Multiple Chemotherapeutics

open access: yesAdvanced Healthcare Materials, EarlyView.
A key challenge in combinatorial chemotherapeutic drug delivery is independent control over release kinetics, especially with drugs of similar size and structure. Here, peptoid substitutions to proteolytically degradable peptides enabled the design of fast and slow‐releasing drug linkers.
Carolyn M. Watkins   +3 more
wiley   +1 more source

Automating Vascular Biology: An End‐to‐End Automated Workflow for High‐Throughput Blood Vessel‐on‐a‐Chip Production and Multi‐Site Validation

open access: yesAdvanced Healthcare Materials, EarlyView.
AngioPlate384 is a 384‐well open‐top platform that automates production of more than 100 miniaturized, perfusable blood vessels embedded in hydrogel and supported by stromal cells. Stromal‐endothelial co‐culture strengthens blood vessel barrier function and yields responses useful for translational planning. Scalable and automation‐ready, it suits drug
Dawn S. Y. Lin   +14 more
wiley   +1 more source

Dual graph attention network for robust fault diagnosis in photovoltaic inverters. [PDF]

open access: yesSci Rep
Bhadra AB   +5 more
europepmc   +1 more source

3D‐Printed Titanium Implants with Bioactive Peptide‐Polysaccharide Scaffolds for Personalized Bone Reconstruction

open access: yesAdvanced Healthcare Materials, EarlyView.
Porous 3D‐printed titanium implants are made bioactive by integration with a supramolecular peptide‐hyaluronic acid nanofibrillar scaffold, without the addition of exogenous cells or growth factors. Uniform filling of the implant architecture promotes vascularized, spatially homogeneous bone regeneration, significantly enhancing osteogenesis throughout
Noam Rattner   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy