Results 71 to 80 of about 156,412 (261)
Ti6Al4V‐Bioglass‐Copper Composites for Load‐Bearing Implants
We have designed and manufactured a novel Ti64‐based composite by adding 45S5 bioglass (BG) and copper (Cu). Adding BG on titanium improves wear resistance and biocompatibility, whereas Cu addition improves mechanical strength while providing inherent lifelong bacterial resistance.
Lochan Upadhayay +3 more
wiley +1 more source
A multilayered small‐caliber vascular scaffold combining electrospinning and 4‐axis printing is developed and biofunctionalized with marine sulfated polysaccharides from Holothuria tubulosa. The resulting construct exhibits enhanced hemocompatibility, tunable mechanical properties, and supports endothelial and smooth muscle cell adhesion and ...
Gabriele Obino +9 more
wiley +1 more source
Sculpting the Future of Bone: The Evolution of Absorbable Materials in Orthopedics
This review summarizes the current status of polymeric, ceramic, and metallic absorbable materials in orthopedic applications, and highlights several innovative strategies designed to enhance mechanical performance, control degradation, and promote bioactivity. We also discuss the progress and translational potential of absorbable materials in treating
Zhao Wang +13 more
wiley +1 more source
Review of Thin Lithium Metal Battery Anode Fabrication – Microstructure – Electrochemistry Relations
Thin, lightweight lithium‐metal anodes are pivotal for practical high‐energy batteries. This review surveys processing routes that convert diverse Li precursors, e.g., ingots, melts, solutions, and vapor, into Li‐rich foils with controlled thickness, areal density, and tailored functionality.
Yuhang Hu +6 more
wiley +1 more source
Adaptive Twisting Metamaterials
This work introduces torque‐controlled twisting metamaterials as a transformative platform for adaptive crashworthiness. By combining multiscale predictive modeling with experimental validation on additively manufactured gyroids, it demonstrates tunable stiffness, collapse stress, and energy absorption.
Mattia Utzeri +6 more
wiley +1 more source
This work unveils the multifunctional roles of Prussian blue analogs (PBAs) within the LPSCl matrix, where they act as effective moisture scavengers and enable partial recovery of electrochemical performance. In addition, owing to their relatively soft nature, PBAs help mitigate interfacial stress and thereby enhance electrochemical stability and ...
Sumin Ko +3 more
wiley +1 more source
Due to excellent physical and chemical stability, the novel designed fluorine‐free polymers with aliphatic‐chain backbones (SP‐PAC12‐QP) are regarded as promising and universal alternatives to perfluorosulfonic acid membranes. Their performances are further improved by physical reinforcement, where the fuel cell performance under high temperature and ...
Fanghua Liu +5 more
wiley +1 more source
Low power heating element provides thermal control during swaging operations [PDF]
Low power, cylindrical heating element in a swaging anvil assembly heats the material being worked on.
Crowell, J. W.
core +1 more source
Electrospun PAN‐MXene nanofibers and yarns integrate enhanced thermal conductivity, photothermal conversion, and triboelectric energy harvesting within a flexible architecture. Interconnected MXene networks promote efficient phonon transport, while their surface chemistry strengthens tribo‐negative behavior, enabling a high power density of 432.7 mW m ...
Ahmadreza Moradi +2 more
wiley +1 more source
Crack propagation in light alloys Ministry of Aviation contract no. PD/28/07 [PDF]
The revised approach to the measurement of the rate of crack propagation in light alloys has entailed the development of new experimental techniques, in particular the development of a multi-channel interval timer.
Younger, A.
core

