Results 161 to 170 of about 2,721,499 (351)

Arbitrary 3D Organic Mixed Ionic‐Electronic Conductor Architectures via Self‐Fusion of PEDOT:PSS Microfibers

open access: yesAdvanced Science, EarlyView.
A general fabricating strategy for arbitrary 3D organic mixed ionic‐electronic conductor architectures is reported using PEDOT:PSS microfiber building blocks. A water‐assisted self‐fusion process is successfully developed in which adhesion can be modulated as reversible (PSS‐rich) or irreversible (PEDOT‐rich) self‐fusion depending on the post‐treatment
Youngseok Kim   +8 more
wiley   +1 more source

Rib‐Reinforced Ultralight and Ultra‐Strong Shell Lattices

open access: yesAdvanced Science, EarlyView.
This study thoroughly reveals the relation between the curvature and stress direction of triply periodic minimal surface (TPMS) thin shell lattices and proposes a novel rib reinforcement design strategy to incorporate ribs along the line of asymptotes (LOA) and the line of principal curvatures (LOC) to enhance the strength of ultralight TPMS shell ...
Winston Wai Shing Ma   +6 more
wiley   +1 more source

Yielding brace system as a next-generation lateral load mechanism for seismic resilient cities. [PDF]

open access: yesSci Rep
Rc B   +11 more
europepmc   +1 more source

Progress in advanced high temperature materials technology [PDF]

open access: yes
Significant progress has recently been made in many high temperature material categories pertinent to such applications by the industrial community. These include metal matrix composites, superalloys, directionally solidified eutectics, coatings, and ...
Ault, G. M., Freche, J. C.
core   +1 more source

Transforming Grain‐Boundary Brittle Precipitates to Ductility Pathways in Complex Concentrated Alloy

open access: yesAdvanced Science, EarlyView.
By engineering graded BCC/L12 interfaces, brittle precipitates in a complex concentrated alloy enable sequential deformation, realizing gigapascal strength with >20% elongation to solve the strength‐ductility trade‐off. ABSTRACT Conventional wisdom holds that hard grain‐boundary (GB) precipitates embrittle structural alloys by acting as crack ...
Zhixin Li   +14 more
wiley   +1 more source

Deformable Eutectic Alloy With Near‐Theoretical Yield Strength via Hierarchical Nanoscale Multiphases and Sessile Defects

open access: yesAdvanced Science, EarlyView.
A CoCrFeNiTa0.4 eutectic high‐entropy alloy achieves a near‐theoretical yield strength of 2.6 GPa with 13.6% plasticity. This breakthrough stems from a hierarchical nanostructure (FCC‐Laves lamellae with L12/D022 precipitates), which alleviates the inter‐phase modulus/hardness mismatch through synergistic strengthening and toughening, guiding the ...
Yusha Luo   +10 more
wiley   +1 more source

Predicting the earthquake ductility demand through a rigid-plastic approach

open access: yes, 2007
Assessing the earthquake ductility of seismic resistant structures usually requires a non-linear dynamic analysis involving both elastic and plastic motion of the structure. A simpler way to estimate the inelastic displacements can be neglecting the elastic motion altogether and referring to a rigid-plastic model.
PORCU, MARIA CRISTINA, CARTA G.
openaire   +1 more source

Addressing Oxygen Embrittlement in Additively Manufactured Titanium via Cu‐Mediated Interstitial Site Engineering

open access: yesAdvanced Science, EarlyView.
A novel “Cu‐mediated interstitial site engineering” strategy is introduced to thermodynamically stabilize hexagonal oxygen (hex‐O) configurations in oxygen‐containing titanium alloys. The hex‐O configuration activates multiple slip systems and enhances dislocation pinning via long‐range repulsion.
Xiaobin Lin   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy