Results 201 to 210 of about 614,790 (357)

Few‐Layered Conductive Graphene Foams for Electrical Transdifferentiation of Mesenchymal Stem Cells Into Schwann Cell‐Like Phenotypes

open access: yesAdvanced Healthcare Materials, EarlyView.
Few‐layered three dimansional conductive graphene foams are promising cytocompatible platforms to transdifferentiate mesenchymal stem cells into Schwann cell‐like phenotypes using electrical and microstructural cues. Applied electrical stimulation conditions resulted in activation of MAPK, neurotrphin and RAS signaling pathways that led to upregulation
Ekin G. Simsar   +9 more
wiley   +1 more source

Growth Hormone‐Loaded 3D Printed Silk Fibroin‐Cellulose Dressings for Ischemic Wounds

open access: yesAdvanced Healthcare Materials, EarlyView.
3D‐printed wound dressings combining carboxymethyl cellulose, silk fibroin, and growth hormone accelerate healing in diabetic ulcers. These bioactive, customizable dressings enhance angiogenesis, cellular proliferation, and immune modulation. Proteomic analysis reveals activation of regenerative pathways and reduced fibrosis, highlighting their ...
Maria Pita‐Vilar   +7 more
wiley   +1 more source

In-depth survey report: dust-control technology for asphalt-pavement milling.

open access: gold, 2011
Michael Leo   +47 more
openalex   +1 more source

Clinical Use of S53P4 Bioactive Glass in the Treatment of Bone Defects and Infected Bone: A Systematic Review of the Quality of Clinical Outcomes and A Grade Assessment

open access: yesAdvanced Healthcare Materials, EarlyView.
Bioactive glass (BAG) S53P4 is a synthetic bone substitute. Clinically it has been used in the treatment of benign bone tumor surgery, in spine surgery, in trauma surgery, in frontal sinus surgery, in diabetic foot osteomyelitis surgery, in mastoid surgery, in oral and maxillofacial surgery in more than 4000 patients, with excellent clinical long‐term ...
Sebastian CE Lindfors   +2 more
wiley   +1 more source

3D Printing of Bacteriophage‐Loaded Hydrogels: Development of a Local and Long‐Lasting Delivery System

open access: yesAdvanced Healthcare Materials, EarlyView.
This research investigates the feasibility of 3D‐printing of a bacteriophage‐containing hydrogel made of alginate and methylcellulose. The printed hydrogels steadily release active bacteriophages for up to 35 days which is beneficial to treat implant‐associated infections.
Corina Vater   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy