Results 91 to 100 of about 693,649 (315)

Advances in Micro/Nanofiber‐Based Porous Materials for High‐Performance Thermal Insulation

open access: yesAdvanced Functional Materials, EarlyView.
Micro/nanofiber porous materials have engendered great interest in the thermal insulation field. Herein, the structural designs, fabrication techniques, and applications of the micro/nanofiber thermal insulation materials are systematically summarized.
Xiaobao Gong   +5 more
wiley   +1 more source

Alginate‐Sludge Derived Biochar‐Calcium Hydrogel for Phosphate Removal and Slow‐Release Fertilizer: A Sustainable and Multifunctional Solution

open access: yesAdvanced Functional Materials, EarlyView.
An alginate‐based biochar hydrogel (ABC‐hydrogel), derived from sewage sludge, is developed for simultaneous phosphate removal and agricultural reuse. It captures phosphorus from water and gradually releases it as fertilizer, enhancing lettuce growth.
Yu Zhang   +4 more
wiley   +1 more source

Unlock the Walnut: How a Pectin‐Rich Suture Tissue and Moisture‐Driven Crack Formation Induce Shell Splitting and Facilitate Seed Germination

open access: yesAdvanced Functional Materials, EarlyView.
Walnut seeds are enclosed in a remarkably strong shell made of sclerenchyma, separated by a pectin‐rich suture tissue. Different cell shapes and chemical composition of this tissue point to an opening mechanism, which is triggered by cyclic humidity changes.
Sebastian J. Antreich   +3 more
wiley   +1 more source

Toward the 3rd Generation of Smart Farming: Materials, Devices, and Systems for E‐Plant Technologies

open access: yesAdvanced Functional Materials, EarlyView.
This review explores the latest developments in e‐plant technologies, which are revolutionizing smart farming by enabling real‐time monitoring of plant and environmental conditions. It covers the design, applications, and systems of e‐plant devices, detailing how they integrate data analytics to optimize agricultural practices, enhance crop yields, and
Daegun Kim   +5 more
wiley   +1 more source

Advancing Electrochemical Nitrate Reduction: Overcoming Rate‐Limiting Bottlenecks with Copper/Cobalt Catalysts

open access: yesAdvanced Functional Materials, EarlyView.
This paper synthesizes CuO@CuCo2O4 catalysts via an emulsion hydrothermal method. Among them, CuCuCo2O4 perfectly inherits the advantages of CuO and Co3O4 and successfully connects the reactions in series. During the electrolysis process, CuO is reduced to Cu.
Jin Li   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy