Results 31 to 40 of about 14,669 (262)
Nonrepetitive edge-colorings of trees [PDF]
A repetition is a sequence of symbols in which the first half is the same as the second half. An edge-coloring of a graph is repetition-free or nonrepetitive if there is no path with a color pattern that is a repetition.
A. Kündgen, T. Talbot
doaj +1 more source
Majority Edge-Colorings of Graphs
We propose the notion of a majority $k$-edge-coloring of a graph $G$, which is an edge-coloring of $G$ with $k$ colors such that, for every vertex $u$ of $G$, at most half the edges of $G$ incident with $u$ have the same color. We show the best possible results that every graph of minimum degree at least $2$ has a majority $4$-edge-coloring, and that ...
Bock, Felix +5 more
openaire +3 more sources
A structural approach to the graceful coloring of a subclass of trees
Let M={1,2,..m} and G be a simple graph. A graceful m-coloring of G is a proper vertex coloring of G using the colors in M which leads to a proper edge coloring using M∖{m} colors such that the associated color of each edge is the absolute difference ...
Laavanya D, Devi Yamini S
doaj +1 more source
Some Equal Degree Graph Edge Chromatic Number
Let G(V, E) be a simple graph and k is a positive integer, if it exists a mapping of f, and satisfied with f(e1)≠6 = f(e2) for two incident edges e1,e2∉E(G), f(e1)≠6=f(e2), then f is called the k-proper-edge coloring of G(k-PEC for short).
Liu Jun +4 more
doaj +1 more source
Improved Bounds for Some Facially Constrained Colorings
A facial-parity edge-coloring of a 2-edge-connected plane graph is a facially-proper edge-coloring in which every face is incident with zero or an odd number of edges of each color. A facial-parity vertex-coloring of a 2-connected plane graph is a proper
Štorgel Kenny
doaj +1 more source
Grünbaum colorings extended to non-facial 3-cycles
We consider the question of when a triangulation with a Grünbaum coloring can be edge-colored with three colors such that the non-facial 3-cycles also receive all three colors; we will call this a strong Grünbaum coloring.
sarah-marie belcastro, Ruth Haas
doaj +1 more source
Abstract A split graph is a graph whose vertex set admits a partition into a stable set and a clique. The chromatic indexes for some subsets of split graphs, such as split graphs with odd maximum degree and split-indifference graphs, are known. However, for the general class, the problem remains unsolved.
S. M. ALMEIDA +2 more
openaire +3 more sources
Normal 5-edge-colorings of a family of Loupekhine snarks
In a proper edge-coloring of a cubic graph an edge uv is called poor or rich, if the set of colors of the edges incident to u and v contains exactly three or five colors, respectively.
Luca Ferrarini +2 more
doaj +1 more source
Complete edge-colored permutation graphs
Nous introduisons le concept de graphes de permutation complets de couleur d'arête comme des graphes complets qui sont l'union bord-disjonction de graphes de permutation « classiques ». Nous montrons qu'un graphe G=(V,E) est un graphe de permutation complet de couleur de bord si et seulement si chaque sous-graphe monochromatique de G est un graphe de ...
Tom Hartmann +5 more
openaire +5 more sources
On the Star Chromatic Index of Generalized Petersen Graphs
The star k-edge-coloring of graph G is a proper edge coloring using k colors such that no path or cycle of length four is bichromatic. The minimum number k for which G admits a star k-edge-coloring is called the star chromatic index of G, denoted by χ′s (
Zhu Enqiang, Shao Zehui
doaj +1 more source

