Results 31 to 40 of about 92,928 (333)

A structural approach to the graceful coloring of a subclass of trees

open access: yesHeliyon, 2023
Let M={1,2,..m} and G be a simple graph. A graceful m-coloring of G is a proper vertex coloring of G using the colors in M which leads to a proper edge coloring using M∖{m} colors such that the associated color of each edge is the absolute difference ...
Laavanya D, Devi Yamini S
doaj   +1 more source

Some Equal Degree Graph Edge Chromatic Number

open access: yesMATEC Web of Conferences, 2016
Let G(V, E) be a simple graph and k is a positive integer, if it exists a mapping of f, and satisfied with f(e1)≠6 = f(e2) for two incident edges e1,e2∉E(G), f(e1)≠6=f(e2), then f is called the k-proper-edge coloring of G(k-PEC for short).
Liu Jun   +4 more
doaj   +1 more source

Improved Bounds for Some Facially Constrained Colorings

open access: yesDiscussiones Mathematicae Graph Theory, 2023
A facial-parity edge-coloring of a 2-edge-connected plane graph is a facially-proper edge-coloring in which every face is incident with zero or an odd number of edges of each color. A facial-parity vertex-coloring of a 2-connected plane graph is a proper
Štorgel Kenny
doaj   +1 more source

Grünbaum colorings extended to non-facial 3-cycles

open access: yesElectronic Journal of Graph Theory and Applications, 2022
We consider the question of when a triangulation with a Grünbaum coloring can be edge-colored with three colors such that the non-facial 3-cycles also receive all three colors; we will call this a strong Grünbaum coloring.
sarah-marie belcastro, Ruth Haas
doaj   +1 more source

Normal 5-edge-colorings of a family of Loupekhine snarks

open access: yesAKCE International Journal of Graphs and Combinatorics, 2020
In a proper edge-coloring of a cubic graph an edge uv is called poor or rich, if the set of colors of the edges incident to u and v contains exactly three or five colors, respectively.
Luca Ferrarini   +2 more
doaj   +1 more source

Edge Colored hypergraphic Arrangements [PDF]

open access: yesPure and Applied Mathematics Quarterly, 2012
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire   +2 more sources

Edge-Based Color Constancy [PDF]

open access: yesIEEE Transactions on Image Processing, 2007
Color constancy is the ability to measure colors of objects independent of the color of the light source. A well-known color constancy method is based on the gray-world assumption which assumes that the average reflectance of surfaces in the world is achromatic.
van de Weijer, J.   +2 more
openaire   +4 more sources

On the Star Chromatic Index of Generalized Petersen Graphs

open access: yesDiscussiones Mathematicae Graph Theory, 2021
The star k-edge-coloring of graph G is a proper edge coloring using k colors such that no path or cycle of length four is bichromatic. The minimum number k for which G admits a star k-edge-coloring is called the star chromatic index of G, denoted by χ′s (
Zhu Enqiang, Shao Zehui
doaj   +1 more source

Normal 6-edge-colorings of some bridgeless cubic graphs

open access: yes, 2019
In an edge-coloring of a cubic graph, an edge is poor or rich, if the set of colors assigned to the edge and the four edges adjacent it, has exactly five or exactly three distinct colors, respectively.
Mazzuoccolo, Giuseppe, Mkrtchyan, Vahan
core   +1 more source

Deterministic distributed edge-coloring with fewer colors [PDF]

open access: yesProceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, 2018
We present a deterministic distributed algorithm, in the LOCAL model, that computes a $(1+o(1)) $-edge-coloring in polylogarithmic-time, so long as the maximum degree $ =\tilde (\log n)$. For smaller $ $, we give a polylogarithmic-time $3 /2$-edge-coloring.
Mohsen Ghaffari   +3 more
openaire   +3 more sources

Home - About - Disclaimer - Privacy