Results 161 to 170 of about 929,200 (373)

Mathematical modelling of three-layer amperometric biosensor and analytical expressions using homotopy perturbation method

open access: yesPartial Differential Equations in Applied Mathematics
In this study, a biosensor based on an electrode that has been chemically altered is represented mathematically. The homotopy perturbation method analytically solves the model, and simulation results are verified against analytical solutions for various ...
K. Ranjani   +2 more
doaj  

Optimizing Angiopep‐2 Density on Polymeric Nanoparticles for Enhanced Blood–Brain Barrier Penetration and Glioblastoma Targeting: Insights From In Vitro and In Vivo Experiments

open access: yesAdvanced Functional Materials, EarlyView.
The Angiopep‐2 peptide density on polymeric nanoparticles significantly impacts blood–brain barrier (BBB) penetration. This study explores this nuanced relationship using various in vitro models and in vivo assays, revealing that dynamic models better predict BBB penetration.
Weisen Zhang   +9 more
wiley   +1 more source

Self‐Poled Halide Perovskite Ruddlesden‐Popper Ferroelectric‐Photovoltaic Semiconductor Thin Films and Their Energy Harvesting Properties

open access: yesAdvanced Functional Materials, EarlyView.
Low‐dimensional halide perovskite thin films, (BA)2(MA)n‐1PbnBr3n+1 (n = 1, 2), exhibit both semiconducting and ferroelectric properties, enabling mechanical and light energy harvesting. Using Cr/Cr₂O₃ or PCBM as barrier layers ensures reproducible ferroelectricity.
Raja Sekhar Muddam   +8 more
wiley   +1 more source

THE DRYING OF RED OAK AT VACUUM PRESSURE

open access: yesMaderas: Ciencia y Tecnología, 2005
The defects can be reduced, compared to that of traditional drying, by vacuum drying of red oak. In this work we present a mathematical model to predict the red oak wood drying kinetics.
Agustín Pérez Ricardez   +2 more
doaj  

Dual‐Mode Film Based on Highly Scattering Nanofibers and Upcycled Chips‐Bags for Year‐Round Thermal Management

open access: yesAdvanced Functional Materials, EarlyView.
Intelligent radiative cooling devices, adaptable to various weather conditions, have the potential for year‐round energy savings. This study introduces a sustainable dual‐mode film made from polycaprolactone nanofibers and upcycled chip bags for effective thermal management.
Qimeng Song   +4 more
wiley   +1 more source

Spectroelectrochemical Determination of Förster Radii for Triplet‐Polaron Quenching in Phosphorescent Organic Light‐Emitting Diodes

open access: yesAdvanced Functional Materials, EarlyView.
Phosphorescent OLEDs suffer from efficiency roll‐off due to triplet‐polaron quenching (TPQ). This study demonstrates for a large set of host‐guest combinations a spectroelectrochemical method to measure the absorption of charged molecules, enabling determining TPQ Förster radii (2.5–4 nm) from the spectral overlap.
Stan E. A. Jaspars   +5 more
wiley   +1 more source

Enhanced Magnetization Switching Efficiency via Orbital‐Current‐Induced Torque in Ti/Ta (Pt)/CoFeB/MgO Structures

open access: yesAdvanced Functional Materials, EarlyView.
The orbital‐current‐induced torque is investigated as an efficient method for controlling magnetization direction. By introducing Ti as an orbital current source in Ti/Ta (or Pt)/CoFeB/MgO structures, the switching current is reduced by ∼25% compared to a conventional spin‐orbit torque structure of Ta/CoFeB/MgO.
So y. Shin   +3 more
wiley   +1 more source

Using Recycled Materials in a Novel Dual Binder System for Hard Carbon Anodes: Closing the Loop Toward Sustainable Li‐/Na‐ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
The study explores for the first time the use of polyvinyl butyral (PVB), particularly recycled PVB, as a sustainable binder for Li/Na‐based electrodes in the framework of the H2020 SUNRISE EU project. Findings revealed that electrodes bound with a sustainable PAA/PVB mixture demonstrated exceptional rate capability and high initial Coulombic ...
Hamideh Darjazi   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy