Results 241 to 250 of about 4,744,635 (350)
Bridging Nature and Technology: A Perspective on Role of Machine Learning in Bioinspired Ceramics
Machine learning (ML) is revolutionizing the development of bioinspired ceramics. This article investigates how ML can be used to design new ceramic materials with exceptional performance, inspired by the structures found in nature. The research highlights how ML can predict material properties, optimize designs, and create advanced models to unlock a ...
Hamidreza Yazdani Sarvestani+2 more
wiley +1 more source
Effective scalar field theory and reduction of couplings [PDF]
Mario Atance, J. L. Cortés
openalex +1 more source
Anomaly Detection Method for Hybrid Workpieces Using Dynamic Time Warping
Monitoring of hybrid workpieces: when machining hybrid workpieces, unavoidable axial deviations of the material transition zone cause temporal shifts in the process force signals. A new anomaly detection method based on dynamic time warping is proposed to detect material defects.
Berend Denkena+3 more
wiley +1 more source
Molecular dynamics simulations are advancing the study of ribonucleic acid (RNA) and RNA‐conjugated molecules. These developments include improvements in force fields, long‐timescale dynamics, and coarse‐grained models, addressing limitations and refining methods.
Kanchan Yadav, Iksoo Jang, Jong Bum Lee
wiley +1 more source
Beyond Order: Perspectives on Leveraging Machine Learning for Disordered Materials
This article explores how machine learning (ML) revolutionizes the study and design of disordered materials by uncovering hidden patterns, predicting properties, and optimizing multiscale structures. It highlights key advancements, including generative models, graph neural networks, and hybrid ML‐physics methods, addressing challenges like data ...
Hamidreza Yazdani Sarvestani+4 more
wiley +1 more source
Low‐Activation Compositionally Complex Alloys for Advanced Nuclear Applications—A Review
Low‐activation compositionally complex alloys (LACCAs) are advanced metallic materials primarily composed of low‐activation elements, offering advantages such as rapid compliance with operational standards and safe recyclability. This review highlights their potential for extreme high‐temperature irradiation environments as structural materials for ...
Yangfan Wang+8 more
wiley +1 more source
Patient‐specific brain phantoms can replace animal trials, aid presurgical training, and enable in silico disease research on cerebrospinal fluid and ventricles. This study presents a method to create ventricular brain phantoms from three‐dimensional magnetic resonance images brain scans, resulting in durable, tunable, reproducible models that mimic ...
Kajal Chandraprakash Jain+3 more
wiley +1 more source
The role of various alloying elements in face‐centered cubic aluminum on the barrier of a Shockley partial dislocation during its motion is presented. The study aims to understand how alloying atoms such as Mg, Si, and Zr affect the energy landscape for dislocation motion, thus influencing the solid solution hardening and softening in aluminum, which ...
Inna Plyushchay+3 more
wiley +1 more source
Antimicrobial Titanium–Copper Alloys: The Role of Microstructure in Arc‐Melted Compositions
Copper‐containing titanium alloys show promise in combating orthopedic implant infections. This study explores the influence of heat treatment on Ti‐11.5Cu and Ti‐33Cu alloys, revealing that larger Ti2Cu precipitates (≈5 μm) enhance antimicrobial efficacy through increased surface contact. Results suggest contact sterilization is the primary mechanism,
Daisy Rabbitt+5 more
wiley +1 more source