Results 211 to 220 of about 624,973 (302)

A Markov approach to credit rating migration conditional on economic states

open access: yesCanadian Journal of Statistics, EarlyView.
Abstract We develop a model for credit rating migration that accounts for the impact of economic state fluctuations on default probabilities. The joint process for the economic state and the rating is modelled as a time‐homogeneous Markov chain. While the rating process itself possesses the Markov property only under restrictive conditions, methods ...
Michael Kalkbrener, Natalie Packham
wiley   +1 more source

Semiclassical inequalities for Dirichlet and Neumann Laplacians on convex domains

open access: yesCommunications on Pure and Applied Mathematics, EarlyView.
Abstract We are interested in inequalities that bound the Riesz means of the eigenvalues of the Dirichlet and Neumann Laplacians in terms of their semiclassical counterpart. We show that the classical inequalities of Berezin–Li–Yau and Kröger, valid for Riesz exponents γ≥1$\gamma \ge 1$, extend to certain values γ<1$\gamma <1$, provided the underlying ...
Rupert L. Frank, Simon Larson
wiley   +1 more source

Isoperimetric inequalities on slabs with applications to cubes and Gaussian slabs

open access: yesCommunications on Pure and Applied Mathematics, EarlyView.
Abstract We study isoperimetric inequalities on “slabs”, namely weighted Riemannian manifolds obtained as the product of the uniform measure on a finite length interval with a codimension‐one base. As our two main applications, we consider the case when the base is the flat torus R2/2Z2$\mathbb {R}^2 / 2 \mathbb {Z}^2$ and the standard Gaussian measure
Emanuel Milman
wiley   +1 more source

Comparative Study of Soft and Hard Boundary Constraints in Physics-Informed Neural Networks for Quantum Mechanical Eigenvalue Problems

open access: green
Dhamala, Anish   +7 more
openalex   +1 more source

Degree theory for 4‐dimensional asymptotically conical gradient expanding solitons

open access: yesCommunications on Pure and Applied Mathematics, EarlyView.
Abstract We develop a new degree theory for 4‐dimensional, asymptotically conical gradient expanding solitons. Our theory implies the existence of gradient expanding solitons that are asymptotic to any given cone over S3$S^3$ with non‐negative scalar curvature. We also obtain a similar existence result for cones whose link is diffeomorphic to S3/Γ$S^3/\
Richard H. Bamler, Eric Chen
wiley   +1 more source

Home - About - Disclaimer - Privacy