Analytic Solutions to Reflection-Transmission Problem of Interface in Anisotropic Ice Sheet
The rheology and evolution of the polar ice sheet are deeply influenced by the anisotropy of ice crystals. Studying the anisotropy of ice crystals can help to well understand and predict the behavior of the polar ice sheet and then the sea level rising ...
Bangbing Wang, Honkuan Wong
doaj +1 more source
The eigenvectors-eigenvalues identity and Sun's conjectures on determinants and permanents [PDF]
In this paper, we prove a conjecture raised by Zhi-Wei Sun in 2018 by the eigenvectors-eigenvalues identity found by Denton, Parke, Tao and X. Zhang in 2019.
arxiv
The eigenvector-eigenvalue identity for the quaternion matrix with its algorithm and computer program [PDF]
Peter Denton, Stephen Parke, Terence Tao and Xining Zhang [arxiv 2019] presented a basic and important identity in linear commutative algebra, so-called {\bf the eigenvector-eigenvalue identity} (formally named in [BAMS, 2021]), which is a convenient and powerful tool to succinctly determine eigenvectors from eigenvalues.
arxiv
The Spectrum and Eigenvectors of the Laplacian Matrices of the Brualdi-Li Tournament Digraphs
Let m≥1 be an integer, let ℬ2m denote the Brualdi-Li matrix of order 2m, and let ℒℬ2m denote the Laplacian matrices of Brualdi-Li tournament digraphs. We obtain the eigenvalues and eigenvectors of ℒℬ2m.
Xiaogen Chen
doaj +1 more source
Modal Analysis of a Discrete System in the Form of a Rocket Launcher Installed on a Motor Vehicle [PDF]
A discrete model of an unguided rocket missile launcher installed on a motor vehicle was developed on the basis of a real assembly. The model is simplified to a vertical plane; it has four degrees of freedom and is adapted for a modal analysis.
Zbigniew DZIOPA, Maciej NYCKOWSKI
doaj +1 more source
A generalized eigenvector-eigenvalue identity from the viewpoint of exterior algebra [PDF]
We consider square matrices over $\mathbb{C}$ satisfying an identity relating their eigenvalues and the corresponding eigenvectors re-proved and discussed by Denton, Parker, Tao and Zhang, called the eigenvector-eigenvalue identity. We prove that for an eigenvalue $\lambda$ of a given matrix the identity holds if and only if the geometric multiplicity ...
arxiv +1 more source
The Rabi Oscillation in Subdynamic System for Quantum Computing
A quantum computation for the Rabi oscillation based on quantum dots in the subdynamic system is presented. The working states of the original Rabi oscillation are transformed to the eigenvectors of subdynamic system. Then the dissipation and decoherence
Bi Qiao, Gu Jiayin
doaj +1 more source
Variational quantum state eigensolver
Extracting eigenvalues and eigenvectors of exponentially large matrices will be an important application of near-term quantum computers. The variational quantum eigensolver (VQE) treats the case when the matrix is a Hamiltonian. Here, we address the case
M. Cerezo+3 more
doaj +1 more source
On Approximating the eigenvalues and eigenvectors of linear continuous operators
Not available.
Emil Cătinaş, I Păvăloiu
doaj +2 more sources
Note on eigenvectors from eigenvalues [PDF]
Denton, Parke, Tao and Zhang gave a new method which determines eigenvectors from eigenvalues for Hermitian matrices with distinct eigenvalues. In this short note, we extend the above result to general Hermitian matrices.
arxiv