Results 31 to 40 of about 473,950 (309)
On generalized G-recurrent manifolds [PDF]
In this paper, we define a type of Riemannian manifold called generalized G-recurrent manifold, and study the various properties of such a manifold. Among others, it is shown that if a generalized G-recurrent manifold is Einstein, then its associated 1 ...
Jaeman Kim
doaj
Janus and J -fold solutions from Sasaki-Einstein manifolds [PDF]
We show that for every Sasaki-Einstein manifold, $M_5$, the AdS$_5\times M_5$ background of type IIB supergravity admits two universal deformations leading to supersymmetric AdS$_4$ solutions.
Nikolay Bobev +4 more
semanticscholar +1 more source
Sasaki-Einstein manifolds [PDF]
This article is an overview of some of the remarkable progress that has been made in Sasaki-Einstein geometry over the last decade, which includes a number of new methods of constructing Sasaki-Einstein manifolds and obstructions.
openaire +2 more sources
Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on paracontact geometry
We prove that if an η\eta -Einstein para-Kenmotsu manifold admits a conformal η\eta -Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu metric as a conformal η\eta -Ricci soliton is Einstein if its potential vector field VV is ...
Li Yanlin +3 more
doaj +1 more source
Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures [PDF]
We prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures $(g, \pmømega)$ with constant scalar curvature is either Einstein, or the dual field of $ømega$ is Killing.
Amalendu Ghosh
doaj +1 more source
REMARKS ON KÄHLER-EINSTEIN MANIFOLDS [PDF]
The main purpose of this note is to characterize a compact Káhler-Einstein manifold in terms of curvature form. The curvature form Q is an EndT valued differential form of type (1,1) which represents the curvature class of the manifold. We shall prove that the curvature form of a Káhler metric is the harmonic representative of the curvature class if ...
openaire +4 more sources
On Einstein Equations on Manifolds and Supermanifolds [PDF]
The Einstein equations (EE) are certain conditions on the Riemann tensor on the real Minkowski space M. In the twistor picture, after complexification and compactification M becomes the Grassmannian $Gr_{2}^{4}$ of 2-dimensional subspaces in the 4-dimensional complex one.
Leites, D., Poletaeva, E., Serganova, V.
openaire +3 more sources
The goal of the present study is to study the ∗-η-Ricci soliton and gradient almost ∗-η-Ricci soliton within the framework of para-Kenmotsu manifolds as a characterization of Einstein metrics.
Santu Dey, Nasser Bin Turki
doaj +1 more source
Examples of Einstein manifolds in odd dimensions [PDF]
We construct Einstein metrics of non-positive scalar curvature on certain solid torus bundles over a Fano Kahler-Einstein manifold. We show, among other things, that the negative Einstein metrics are conformally compact, and the Ricci-flat metrics have ...
Chen, Dezhong
core +1 more source
Some Homogeneous Einstein Manifolds [PDF]
Let G be a connected Lie group and H a closed subgroup with Lie algebra such that in the Lie algebra g of G there exists a subspace m with (subspace direct sum) and In this case the corresponding manifold M = G/H is called a reductive homogeneous space and (g,) (or (G,H)) a reductive pair.
openaire +2 more sources

