Results 71 to 80 of about 576,868 (362)
Mach's Principle selects 4 space-time dimensions
, 2012 Bi-tensor kernel in integral form of Einstein equations realizing Mach's idea
of non-existence of empty space-times is taken as an inverse of differential
operator ("Mach operator") defined conventionally as a second variation of
Einstein's gravity ...Altshuler, Boris L.core +1 more sourceA Generalized Representation Formula for Systems of Tensor Wave
Equations [PDF]
, 2010 In this paper, we generalize the Kirchhoff-Sobolev parametrix of Klainerman
and Rodnianski to systems of tensor wave equations with additional first-order
terms.Arick Shao, B. O’Neill, D.M. Eardley, D.M. Eardley, F.G. Friedlander, P. Chruściel, Q. Wang, S. Klainerman, S. Klainerman, S. Klainerman, S. Klainerman, S. Klainerman, S. Klainerman, S. Sobolev, S.F. Hawking, Y. Choquét-Bruhat +15 morecore +1 more sourceSpectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics
Advanced Functional Materials, EarlyView.Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract
The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.Junheon Ha, Yingshan Ma, Yong Nam An, Sung‐Un An, Hyeon Hak Jung, Suvi‐Tuuli Varjamo, Jiwon Yoo, Junho Min, Hanvit Kim, Faisal Ahmed, Sang Hoon Chae, Young Min Song, Weiwei Cai, Tawfique Hasan, Zhipei Sun, Dong‐Ho Kang, Hyeon‐Jin Shin, Yunyun Dai, Hoon Hahn Yoon +18 morewiley +1 more sourceAlgebraic Curvature Tensors of Einstein and Weakly Einstein Model Spaces
The PUMP Journal of Undergraduate Research, 2019 This research investigates the restrictions on the symmetric bilinear form with associated algebraic curvature tensor R in Einstein and Weakly Einstein model spaces. We show that if a model space is Einstein and has a positive definite inner product, then: if the scalar curvature is non-negative, the model space has constant sectional curvature, and if openaire +2 more sourcesPhoto‐Switching Thermal and Lithium‐Ion Conductivity in Azobenzene Polymers
Advanced Functional Materials, EarlyView.Light‐responsive azobenzene polymers control thermal and ionic transport simultaneously through structural transitions. UV illumination disrupts π–π stacking, converting crystalline trans states to amorphous cis configurations. Thermal conductivity drops from 0.45 to 0.15 W·m−1·K−1 while Li+ diffusivity increases 100 fold. This dual transport switching Jaeuk Sung, Jungwoo Shin, Qiujie Zhao, Minjee Kang, Christopher Evans, Cecilia Leal, Paul V. Braun, David G. Cahill +7 morewiley +1 more sourceThe Einstein-Dirac Equation on Riemannian Spin Manifolds
, 1999 We construct exact solutions of the Einstein-Dirac equation, which couples
the gravitational field with an eigenspinor of the Dirac operator via the
energy-momentum tensor.Baum, Bleecker, Booss-Bavnbek, Bourguignon, Boyer, Bär, Cahen, Eui Chul Kim, Finster, Finster, Friedrich, Friedrich, Friedrich, Friedrich, Friedrich, Friedrich, Grunewald, Hsiung, Kath, Kim, Kim, Kim, Kosmann, Lichnerowicz, Lichnerowicz, Schrödinger, Tanno, Thomas Friedrich, van Nieuwenhuizen, Wang, Yano +30 morecore +2 more sourcesStochastic Gravity: Theory and Applications [PDF]
, 2003 Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which ...A Albrecht, A Campos, A Campos, A Campos, A Campos, A Campos, A Campos, A Casher, A Einstein, A Einstein, A Kent, A Kent, A Kent, A Matacz, A Matacz, A Rebhan, A Rebhan, A Roura, A Roura, A Roura, A Roura, A Roura, A Strominger, A Vilenkin, AA Grib, AA Starobinsky, AA Starobinsky, AD Linde, AD Linde, AD Linde, AH Guth, AH Zemanian, AO Caldeira, AO Caldeira, AP Almeida de, B Berger, B Berger, B Berger, B Jensen, BL Hu, BL Hu, BL Hu, BL Hu, BL Hu, BL Hu, BL Hu, BL Hu, BL Hu, BL Hu, BL Hu, BL Hu, BL Hu, BL Hu, BL Hu, BL Hu, BL Hu, BL Hu, BL Hu, BL Hu, BL Hu, BL Hu, BL Hu, BL Hu, BP Jensen, BS DeWitt, BS DeWitt, BS DeWitt, C Barrabès, C Barrabès, C Greiner, C Kiefer, C Kuo, C-H Wu, C-H Wu, CJ Isham, CJ Isham, CJ Isham, CJ Isham, CW Misner, CW Misner, D Boyanovsky, D Giulini, D Hochberg, D Hochberg, D Kabat, D-S Lee, DJ Gross, DM Capper, DM Page, DN Page, DS Jones, DW Sciama, E Calzetta, E Calzetta, E Calzetta, E Calzetta, E Calzetta, E Calzetta, E Calzetta, E Calzetta, E Calzetta, E Calzetta, E Calzetta, E Calzetta, E Calzetta, E Calzetta, E Calzetta, E Elizalde, E Joos, E Mottola, E Tomboulis, EA Calzetta, EA Calzetta, EB Davies, EW Kolb, F Cooper, F Dowker, F Dowker, F Lombardo, FC Lombardo, Flanagan, FT Brandt, G Cognola, GF Smoot, GT Horowitz, GT Horowitz, GT Horowitz, GT Horowitz, GT Horowitz, GT Horowitz, GT Horowitz, GW Gibbons, GW Gibbons, H Grabert, H Nyquist, H Osborn, HA Weldon, HB Callen, HB Callen, HF Dowker, J Cespedes, J Donoghue, J Garriga, J S Schwinger, J Twamley, J Weber, JA Frieman, JB Hartle, JB Hartle, JB Hartle, JB Hartle, JB Hartle, JB Hartle, JB Hartle, JC Niemeyer, JD Bekenstein, JD Bekenstein, JD Bekenstein, JF Donoghue, JF Donoghue, JF Donoghue, JJ Halliwell, JJ Halliwell, JJ Halliwell, JJ Halliwell, JM Bardeen, JM Bardeen, JM Maldacena, JM Maldacena, JP Paz, JP Paz, JP Paz, JP Paz, JT Whelan, JW York Jr., JW York Jr., JW York Jr., JZ Simon, K Chou, K Kirsten, K Lindenberg, K Shiokawa, KW Howard, KW Howard, L Landau, L Parker, L Parker, L Schwartz, L Susskind, L V Keldysh, LH Ford, LH Ford, LH Ford, LH Ford, LJ Garay, LJ Garay, LJ Garay, LP Grishchuk, M Gell-Mann, M Gell-Mann, M Gleiser, M Morikawa, M Yamaguchi, MJ Duff, MR Brown, MR Brown, MV Fischetti, ND Birrell, NG Phillips, NG Phillips, NG Phillips, NG Phillips, NG Phillips, P Anderson, P Candelas, P Hajicek, PM Bakshi, PR Anderson, PR Anderson, PR Anderson, PR Anderson, PR Anderson, PR Anderson, PR Anderson, PR Johnson, R Camporesi, R Kubo, R Kubo, R Kubo, R Martín, R Martín, R Martín, R Martín, R Omnes, R Omnes, R Omnes, R Omnes, R Omnes, R Omnes, R Parentani, R Parentani, R Sorkin, RB Griffiths, RD Jordan, RD Jordan, RD Sorkin, RD Sorkin, RM Wald, RM Wald, RM Wald, RM Wald, RM Wald, RM Wald, RM Wald, RP Feynman, RP Feynman, RU Sexl, S Carlip, S Carlip, S Deser, S Massar, S Massar, S Randjbar-Daemi, S Randjbar-Daemi, S Sinha, S Sinha, S Weinberg, SA Fulling, SA Ramsey, SL Adler, SM Christensen, SM Christensen, SW Hawking, SW Hawking, SW Hawking, SW Hawking, T Jacobson, T Padmanabhan, T Padmanabhan, TA Brun, TS Bunch, U Weiss, VA Belinsky, VA Belinsky, VF Mukhanov, VN Lukash, VP Frolov, VP Frolov, VP Frolov, W Bernard, W Israel, W Tichy, W-M Suen, W-M Suen, WA Hiscock, WG Unruh, WH Zurek, WH Zurek, WH Zurek, WH Zurek, WH Zurek, YaB Zel’dovich, YaB Zel’dovich, Z Su +303 morecore +3 more sourcesMultimodal Structural Color Graphics Based on Colloidal Photonic Microdome Arrays
Advanced Functional Materials, EarlyView.A hybrid photonic system combining colloidal crystals and microscale domes is designed to achieve four switchable optical states via the interplay of Bragg reflection and TIR interference. The graphics composed of the photonic microdome arrays provide tunable, angle‐sensitive structural coloration and concealed‐to‐revealed transitions, offering a ...Jun‐Gu Kang, Hwan‐Young Lee, Chaerim Son, Hyeonbin Jo, Shin‐Hyun Kim +4 morewiley +1 more sourceTeleparallel Killing Vectors of the Einstein Universe
, 2007 In this short paper we establish the definition of the Lie derivative of a
second rank tensor in the context of teleparallel theory of gravity and also
extend it for a general tensor of rank $p+q$.Camci U., Carot J., Feroze T., M. JAMIL AMIR, M. SHARIF, Nashed G. G. L., Nashed G. G. L., Petrov A. Z., Weitzenböck R. +8 morecore +1 more sourceKilling tensors and Einstein-Weyl geometry [PDF]
Colloquium Mathematicum, 1999 In the first part of the reviewed paper, the author considers the Killing tensors on a Riemannian manifold \((M,g)\). Among other results, he proves that if \((M,g)\) is compact and simply connected, then every Killing tensor field \(S\) with at most two eigenvalues \(\lambda, \mu\) at each point of \(M\), such that \(\mu\) is constant and \(\dim\ker(S-openaire +2 more sources