Results 221 to 230 of about 126,747 (291)
Design rules are presented to control intestinal organoid polarity in fully synthetic hydrogels. The laminin‐derived IKVAV sequence is crucial to obtain correct intestinal organoid polarity. Increasing hydrogel dynamics further supports the growth of correctly polarized intestinal organoids, while a bulk level of stiffness (G’ ≈ 0.7 kPa) is crucial to ...
Laura Rijns +10 more
wiley +1 more source
Bioprinting Organs—Science or Fiction?—A Review From Students to Students
Bioprinting artificial organs has the potential to revolutionize the medical field. This is a comprehensive review of the bioprinting workflow delving into the latest advancements in bioinks, materials and bioprinting techniques, exploring the critical stages of tissue maturation and functionality.
Nicoletta Murenu +18 more
wiley +1 more source
Hybrid wrinkled topographies coordinate immune, tissue, and bacterial interactions. The surfaces promote osteointegration, tune macrophage polarization, and inhibit biofilm formation, highlighting a multifunctional strategy for next‐generation implant design.
Mohammad Asadi Tokmedash +4 more
wiley +1 more source
Comparison of therapeutic and diagnostic applications of a surface‐emitting light source with multiwavelength emission characteristics. Abstract Conventional light‐emitting‐diode‐based light sources suffer from rigidity, localized heating, and poor adaptability to skin deformation, limiting their use in skin‐attached medical devices.
In Ho Kim +10 more
wiley +1 more source
3D Printing Strategies for Bioengineering Human Cornea
This review highlights recent progress in 3D bioprinting strategies for engineering human corneas. Key aspects include the replication of corneal transparency, curvature, and biomechanical properties, alongside innovations in recent advancements in 3D printing methods, which benefit in overcoming current challenges.
Yunong Yuan +4 more
wiley +1 more source
Compression‐Tension‐Asymmetry and Stiffness Nonlinearity of Collagen‐Matrigel Composite Hydrogels
Self‐assembled collagen hydrogel matrices are widely used in tissue engineering applications. These matrices stiffen and contract laterally under tension due to fiber alignment and soften and collapse under compression due to fiber buckling. It is demonstrated that filler materials, such as Matrigel, linearize the mechanical behavior of collagen ...
David Böhringer +9 more
wiley +1 more source
Neural electrodes face a mechanical mismatch with brain tissue. This study proposes a bioelectromechanical coupling strategy using an ultra‐flexible electrode designed for synchronized motion. Optimized to match brain tissue stiffness, it achieves dual signal acquisition and micromotion sensing, with characterized interfacial forces and piezoresistive ...
Donglei Chen +11 more
wiley +1 more source
Approximate analytical prediction on elastic properties of Diamond structures with varying porosities and orientations. [PDF]
Wang H +5 more
europepmc +1 more source
Mechanochemical interactions in cancer cells: The role of substrate stiffness in cell behavior and drug response. [PDF]
Ramezani SR +2 more
europepmc +1 more source
Combined Use of Vibrational Spectroscopy, Ultrasonic Echography, and Numerical Simulations for the Non-Destructive Evaluation of 3D-Printed Materials for Defense Applications. [PDF]
Apostolidou D +4 more
europepmc +1 more source

