Results 181 to 190 of about 139,348 (340)

Multi‐Scaled Cellulosic Nanonetworks from Tunicates

open access: yesAdvanced Functional Materials, EarlyView.
Microbial and plant nanonetworks of cellulose have enabled a wide range of high‐performance yet sustainable materials. Herein, a third class of cellulosic nanonetworks is showcased by exploiting the only animal tissue‐producing cellulose nanofibers, i.e., ascidians. An ultrastructure including spherical cells and a microvasculature with diameters of 50–
Mano Govindharaj   +10 more
wiley   +1 more source

A Flexible Photovoltaic Fatigue Factor for Quantification of Mechanical Device Performance

open access: yesAdvanced Functional Materials, EarlyView.
The flexible Photovoltaic fatigue factor (F) quantifies mechanical and photovoltaic performance as a function of the power conversion efficiency (PCE), the strain (ε${\varepsilon}$), and the number of bending cycles (NBC) in bending tests. The strain depends on the bending radius (R) and the thicknesses of the substrate (ts) and the photovoltaic device
Lulu Sun   +8 more
wiley   +1 more source

Stratum Corneum‐Inspired Zwitterionic Hydrogels with Intrinsic Water Retention and Anti‐Freezing Properties for Intelligent Flexible Sensors

open access: yesAdvanced Functional Materials, EarlyView.
A novel stratum corneum‐inspired zwitterionic hydrogel is developed for intelligent, flexible sensors, featuring intrinsic water retention and anti‐freezing properties. The quasi‐gel, composed of hygroscopic polymers and bound water, maintains its softness across a wide range of humidity.
Meng Wu   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy