Results 81 to 90 of about 1,048,294 (315)
Superlubricious Surfaces Through Surface Attached Hydrogels Obtained by C,H‐insertion Crosslinking
Taking synovial joints as a source of inspiration, the friction properties of surfaces covered with 1d‐swelling polyelectrolyte hydrogels in combination with a shear‐thinning aqueous lubricant are studied. Such systems obtained by C,H insertion crosslinking show superlubricious behavior, even surpassing the friction values reported for the natural ...
Renato Maraula+5 more
wiley +1 more source
Bi‐directionally assembled BN µ‐platelets in micropatterns formed by a micro‐molding method for thermal interface materials are demonstrated. The BN µ‐platelets are vertically aligned selectively, while compressed regions without patterns accommodate horizontally assembled BN µ‐platelets. Through anisotropic orientation, high thermal conductivities for
Young Gil Kim+12 more
wiley +1 more source
Shape‐Reconfigurable Crack‐Based Strain Sensor with Ultrahigh and Tunable Sensitivity
A highly sensitive crack‐based sensor with tunable strain detection capabilities is demonstrated through controlled nanocrack formation in a line‐patterned shape memory polymer substrate. The sensor design integrates thermoplastic polyurethane and poly(lactic acid), enabling thermo‐responsive reconfiguration of crack geometry.
Seungjae Lee+10 more
wiley +1 more source
RELATIONS BETWEEN STRENGTH OF FAILURE, STRAIN ABILITY, ELASTIC MODULUS AND FAILURE TIME OF CONCRETE
Tadashi Hatano
openalex +2 more sources
Bioorthogonal Engineering of Cellular Microenvironments Using Isonitrile Ligations
Highly selective chemistries are required for fabrication and post‐cross–linking modification of cell‐encapsulating hydrogels used in tissue engineering applications. Isonitrile ligation reactions represent a promising class of bioorthogonal chemistries for engineering hydrogel‐based cellular microenvironments. Isonitrile‐based hydrogels are stable and
Ping Zhou+2 more
wiley +1 more source
Internal Friction and Elastic Modulus of Sintered Copper
Kikuji Sat o, Takashi Sakurai
openalex +2 more sources
Multi‐Scaled Cellulosic Nanonetworks from Tunicates
Microbial and plant nanonetworks of cellulose have enabled a wide range of high‐performance yet sustainable materials. Herein, a third class of cellulosic nanonetworks is showcased by exploiting the only animal tissue‐producing cellulose nanofibers, i.e., ascidians. An ultrastructure including spherical cells and a microvasculature with diameters of 50–
Mano Govindharaj+10 more
wiley +1 more source
Role of Dislocation Rearrangement in the Elastic Modulus Recovery of Deformed Copper
M. Koiwa, Ryukiti R. Hasiguti
openalex +2 more sources