Results 191 to 200 of about 6,229,800 (359)

Ti6Al4V‐Bioglass‐Copper Composites for Load‐Bearing Implants

open access: yesAdvanced Healthcare Materials, EarlyView.
We have designed and manufactured a novel Ti64‐based composite by adding 45S5 bioglass (BG) and copper (Cu). Adding BG on titanium improves wear resistance and biocompatibility, whereas Cu addition improves mechanical strength while providing inherent lifelong bacterial resistance.
Lochan Upadhayay   +3 more
wiley   +1 more source

Some basic problems of the mathematical theory of elasticity

open access: yes, 1953
N. Muskhelishvili   +3 more
semanticscholar   +1 more source

Low‐Temperature Fabrication of Thymosin β4‐Loaded Soluble Microneedles to Promote Wound Healing by Specific Binding to Downregulated Immune Regulators Vsig4 and IL22rɑ2

open access: yesAdvanced Healthcare Materials, EarlyView.
Schematic diagram depicting the fabrication and application of thymosin β4 (Tβ4)‐loaded microneedle patches for wound treatment. The Tβ4 was loaded into chitosan (CS) and sucrose MNs under mild conditions (4°C, 65% relative humidity). The Tβ4 MN patch specifically binds to the downregulated immune regulators Vsig4 and IL22rα2, thereby accelerating ...
Shilong He   +4 more
wiley   +1 more source

Start, Stop, Rewind, Repeat—Cyclic Exposure of Adipose Stromal Cells‐derived Cartilage Organoids to Chondrogenic and Proliferative Cues to Achieve Scaled‐up and Customizable Bone Formation by Endochondral Ossification

open access: yesAdvanced Healthcare Materials, EarlyView.
This study exploits the plasticity of ASCs‐derived cartilage organoids which generate a perichondrial layer of MSCs when exposed to cyclic chondrogenic/proliferative cues. Using these organoids as building blocks, we develop (i) Phalange Shaped Tissue Engineered Cartilage (Pa‐TECs), recapitulating endochondral ossification suitable for the treatment of
Pablo Pfister   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy