Results 281 to 290 of about 1,324,147 (348)

Biomimetic Iridescent Skin: Robust Prototissues Spontaneously Assembled from Photonic Protocells

open access: yesAdvanced Functional Materials, EarlyView.
Uniform nanoparticles are induced to form arrays (photonic crystals) in the cores of biopolymer capsules, endowing these ‘protocells’ with structural color. These protocells are then assembled into large self‐standing objects, i.e., prototissues, with robust mechanical properties as well as iridescent optical properties.
Medha Rath   +6 more
wiley   +1 more source

Anisotropic Shear Properties of Organic Interfaces in Bio‐composite Materials

open access: yesAdvanced Functional Materials, EarlyView.
A novel cantilever design enables direct probing of shear properties at single organic interfaces within biocomposite prismatic ultrastructures. By decoupling lateral and torsional shear responses, the method reveals isotropic behavior in Atrina vexillum and pronounced anisotropy in Unio pictorum.
Kian Tadayon   +2 more
wiley   +1 more source

Tunable Coordination Number in Non‐Metal‐Introduced Copper Catalysts Enables High‐Performance Electrochemical CO2 Reduction to C2 Products

open access: yesAdvanced Functional Materials, EarlyView.
Copper catalysts introduced with different non‐metallic elements regulating the coordination number of Cu are prepared by magnetron sputtering. Reducing the Cu coordination number enhances C─C coupling and boosts C2+ product selectivity, by lowering the energy barrier for the *CO → *CHO conversion step. The optimized Si‐doped Cu catalyst achieves a C2+
Xiaoye Du   +8 more
wiley   +1 more source

Mechanical Properties of Architected Polymer Lattice Materials: A Comparative Study of Additive Manufacturing and CAD Using FEM and µ‐CT

open access: yesAdvanced Functional Materials, EarlyView.
This study examines how pore shape and manufacturing‐induced deviations affect the mechanical properties of 3D‐printed lattice materials with constant porosity. Combining µ‐CT analysis, FEM, and compression testing, the authors show that structural imperfections reduce stiffness and strength, while bulk material inhomogeneities probably enhance ...
Oliver Walker   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy