Results 211 to 220 of about 120,375 (305)

Insights on SEI Growth and Properties in Na‐Ion Batteries via Physically Driven Kinetic Monte Carlo Model

open access: yesAdvanced Energy Materials, EarlyView.
The novel kinetic Monte Carlo model presented here incorporates spatially‐ and time‐dependent electrical potential, which enables the precise study of the solid electrolyte interphase formation in Na‐ion batteries. The effects of electrolyte composition and charging conditions on the growth and behavior of the solid electrolyte interphase during the ...
Kie Hankins   +4 more
wiley   +1 more source

Highly Stabilized Ni‐Rich Cathodes Enabled by Artificially Reversing Naturally‐Formed Interface

open access: yesAdvanced Energy Materials, Volume 15, Issue 11, March 18, 2025.
The application of Ni‐rich cathode materials is obstructed by interfacial and structural instability. This work proposes a facile and cost‐effective Al‐based vapor‐phase surface reaction strategy on Ni‐rich cathode to maintain its structural integrity from near‐surface to bulk.
Jinjin Ma   +11 more
wiley   +1 more source

RE-EV: Renewable Energy for Electric Vehicles Project

open access: yesRE-EV: Renewable Energy for Electric Vehicles Project
identifier:oai:t2r2.star.titech.ac.jp ...
openaire  

Aqueous Zinc‐Based Batteries: Active Materials, Device Design, and Future Perspectives

open access: yesAdvanced Energy Materials, EarlyView.
This review conducts a comprehensive analysis of aqueous zinc‐based batteries (AZBs) based on their intrinsic mechanisms, including redox reactions, ion intercalation reactions, alloying reactions, electrochemical double‐layer reactions, and mixed mechanisms, systematically discussing recent advancements in each type of AZBs.
Yan Ran, Fang Dong, Shuhui Sun, Yong Lei
wiley   +1 more source

Synergetic Lattice and Surface Engineering: Stable High‐Voltage Cycle Performance in P3‐Type Layered Manganese Oxide

open access: yesAdvanced Energy Materials, EarlyView.
A dual lattice‐surface strategy employing NaTi2(PO4)3 is adopted to enhance the performance of P3‐type Na0.67[Zn0.3Mn0.7]O2, whereby Ti stabilizes the bulk lattice and surface P species mitigate degradation, collectively improving high‐voltage cycling stability, Na+ diffusion, and oxygen redox reversibility through synergistic structural and ...
Natalia Voronina   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy