Results 221 to 230 of about 120,375 (305)

Mechanistic Considerations for Battery Charging Protocol Design

open access: yesAdvanced Energy Materials, EarlyView.
This review bridges practical fast‐charging protocols with fundamental mechanisms of SOC‐dependent structural and compositional changes in electrode materials, kinetic limitations such as polarization and inhomogeneity, and heat generation characteristics shaped by protocol design.
Wenlong Li   +13 more
wiley   +1 more source

From Materials to Systems: Challenges and Solutions for Fast‐Charge/Discharge Na‐Ion Batteries

open access: yesAdvanced Energy Materials, EarlyView.
This review systematically analyzes the key characteristics limiting the fast‐charge/discharge capability of Na‐ion batteries (SIBs) from a multi‐scale perspective encompassing electrode materials, the electrode‐electrolyte interface, and the system. Furthermore, it presents practical solution strategies for the fundamental issues arising at each scale,
Bonyoung Ku   +5 more
wiley   +1 more source

Upscaling Sodium‐Ion Battery Cells: From Aqueous Processing to Performance Assessment of Hard Carbon|Prussian White Pouch Cells

open access: yesAdvanced Energy Materials, EarlyView.
This study investigates the feasibility of scaling up Prussian White (PW)‐based cathode manufacturing at a pilot scale. Through careful PW dehydration combined with optimized aqueous processing, we report the stepwise development of industrially relevant 1 Ah pouch cells and evaluate their performance under various conditions.
Faduma M. Maddar   +7 more
wiley   +1 more source

Prediction of Structural Stability of Layered Oxide Cathode Materials: Combination of Machine Learning and Ab Initio Thermodynamics

open access: yesAdvanced Energy Materials, EarlyView.
In this work, we developed a phase‐stability predictor by combining machine learning and ab initio thermodynamics approaches, and identified the key factors determining the favorable phase for a given composition. Specifically, a lower TM ionic potential, higher Na content, and higher mixing entropy favor the O3 phase.
Liang‐Ting Wu   +6 more
wiley   +1 more source

Towards Climate Neutrality by 2050: Role of Aluminum for Short‐ and Long‐Term Energy and Hydrogen Storage

open access: yesAdvanced Energy Materials, EarlyView.
The Aluminum energy storage cycle involves the use of renewable energy for Al production and the generation of heat (dry cycle) and heat and H2 (wet cycle) for energy production via Al‐steam combustion. ABSTRACT Reaching climate neutrality by 2050 requires innovative long‐term energy storage (LTES) solutions beyond the current use of fossil fuels ...
Lorenzo Trombetti   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy