Results 31 to 40 of about 16,523 (142)

Chloride‐Mediated Electron Buffering on Ni‐Fe Anodes for Ampere‐Level Alkaline Seawater Electrolysis

open access: yesAdvanced Functional Materials, EarlyView.
Utilizing abundant chloride ion (Cl−) of seawater, the small organic molecule (SOM) layer on the electrocatalyst surface is converted to SOM‐Cl layer. Meanwhile, the conjugated structure of SOM is modified. SOM‐Cl layer can effectively mitigate the damage caused by the highly oxidative environment.
Qian Niu   +4 more
wiley   +1 more source

Harnessing Interfacial Cl− Ions for Concurrent Formate Production at Industrial Level via CO2 Reduction and Methanol Oxidation

open access: yesAdvanced Functional Materials, EarlyView.
The replacement of the anodic OER in CO2RR with energy‐saving methanol oxidation reaction and the creation of a favorable microenvironment through interfacial Cl− ions enable concurrent formate production at industrial‐level current densities. Abstract The efficient electrocatalytic conversion of CO2 to formate is often impeded by the high energy ...
Yiqun Chen   +7 more
wiley   +1 more source

Defect‐Induced Selectivity Modulation Using Copper Triazole Molecular Frameworks for Electrochemical CO2 Reduction

open access: yesAdvanced Functional Materials, EarlyView.
A Cu‐triazole and D‐Cu‐triazole MOF is studied for eCO2RR. After introducing open metal sites and reducing the particle size through a competitive coordination strategy with N,N‐diethylformamide, the defects significantly enhance and alter the catalytic properties with increased selectivity for C2+ products. Abstract Metal–organic frameworks (MOFs) are
Anirudha Shekhawat   +7 more
wiley   +1 more source

Low‐Temperature Exsolution of Cobalt From Perovskite Nanoparticles via Bead Milling for Enhanced Electrocatalytic Oxygen Evolution Reaction

open access: yesAdvanced Functional Materials, EarlyView.
High‐temperature requirements and complex synthesis limit the practical use of perovskite‐based metal exsolution catalysts. This study addresses these limitations by employing bead milling, enabling efficient metal exsolution at a significantly lower temperature (300 °C) from La0.6Sr0.4CoO3‐δ nanoparticles. Consequently, the catalytic mass activity for
Sang‐Mun Jung   +10 more
wiley   +1 more source

Accelerated Kinetics of Desolvation and Redox Transformation Enabled by MOF Sieving for High‐Loading Mg‐S Battery

open access: yesAdvanced Functional Materials, EarlyView.
A strategy of sieving catalysis based on the MIL‐101(Cr) with multistage pore structure and Lewis acid sites has been proposed as the catalyst to accelerate the kinetics of desolvation and redox conversion of sulfur species, achieving high performance Mg‐S batteries.
Qinghua Guan   +8 more
wiley   +1 more source

Self‐Assembled Gallium Sulfide (GaS) Heterostructures Enabling Efficient Water Splitting and Selective Ammonia Sensing

open access: yesAdvanced Functional Materials, EarlyView.
Gallium sulfide (GaS) forms self‐assembled heterostructures with its native oxide, exhibiting high performance in water splitting and ultrasensitive and selective ammonia detection. Surface defects and controlled oxidation enhance catalytic activity and sensing response.
Danil W. Boukhvalov   +13 more
wiley   +1 more source

Ternary Synergy in Layered Double Hydroxides for Efficient and Stable Nitrate Reduction

open access: yesAdvanced Functional Materials, EarlyView.
Ternary CuZnFe LDH enables efficient electrocatalytic nitrate‐to‐ammonia conversion via controlled in situ reconstruction: zinc leaching creates porous active sites, copper reduced to metallic copper, while iron oxide keeps stable. Synergistic Cu‐Fe redox coupling drives tandem catalysis (nitrate→nitrite→NH3), achieving 95% Faraday efficiency and ...
Jiaqian Kang   +9 more
wiley   +1 more source

Edge‐Delocalized Electron Effect on Self‐Expediating Desolvation Kinetics for Low‐Temperature Li─S Batteries

open access: yesAdvanced Functional Materials, EarlyView.
The self‐transformed Schottky heterojunction on MXene is developed to facilitate the dissociation of Li (solvent)x+ to achieve fast Li+ desolvation to promote rapid sulfur conversion kinetics by decreasing the related barriers, contributing to high‐performance Li─S batteries under low‐temperatures.
Yongzheng Zhang   +12 more
wiley   +1 more source

Mechanisms of Anode Interfacial Phenomena and Multi‐perspective Optimization in Aqueous Alkaline Zinc‐Air Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Zinc‐air batteries demonstrate great potential for sustainable energy storage but face major anode‐related challenges. This review provides a mechanism‐driven overview of zinc anode interfacial issues, e.g. dendrite formation, passivation, self‐corrosion, and hydrogen evolution; and explores advances in electrode, surface, and electrolyte engineering ...
Hong Zhao   +2 more
wiley   +1 more source

Covalent Organic Frameworks for Photocatalysis

open access: yesAdvanced Materials, EarlyView.
This review provides an overview of recent advances in covalent organic frameworks (COFs) for photocatalysis, focusing on sustainable energy applications like water splitting, hydrogen peroxide generation, and CO2 and N2 reduction. It discusses design principles, structure‐function relationships, challenges in COF photocatalysis, and strategies to ...
Bikash Mishra   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy