Results 191 to 200 of about 77,901 (345)
Fe─NC porous oxygen reduction electrocatalysts are prepared employing a 2,4,6‐Triaminopyrimidine‐based porous organic polymer, a Mg2+ Lewis acid, and a low‐temperature cation exchange protocol. Using the polymer precursor achieves high pyrolysis yields and results in atomically dispersed FeNx sites. The resulting catalysts feature hierarchical porosity
Eliot Petitdemange +11 more
wiley +1 more source
Multisensory Neuromorphic Devices: From Physics to Integration. [PDF]
Gui A, Mu H, Yang R, Zhang G, Lin S.
europepmc +1 more source
Electrosynthesis of Bioactive Chemicals, From Ions to Pharmaceuticals
This review discusses recent advances in electrosynthesis for biomedical and pharmaceutical applications. It covers key electrochemical materials enabling precise delivery of ions and small molecules for cellular modulation and disease treatment, alongside catalytic systems for pharmaceutical synthesis.
Gwangbin Lee +4 more
wiley +1 more source
Electrospun Nanofiber Platforms for Advanced Sensors in Livestock-Derived Food Quality and Safety Monitoring: A Review. [PDF]
Ramachandraiah K, Martin EM, Limayem A.
europepmc +1 more source
A Novel Microfabricated Electrochemical Gas Sensor for Hydrogen Cyanide
Hiromitsu Hachiya +6 more
openalex +2 more sources
A FeN4─O/Clu@NC‐0.1Ac catalyst containing atomically‐dispersed FeN4─O sites (medium‐spin Fe2+) and Fe clusters delivered a half‐wave potential of 0.89 V for ORR and an overpotential of 330 mV at 10 mA cm−2 for OER in 0.1 m KOH. When the catalyst was used in a rechargeable Zn–air battery, a power density of 284.5 mW cm−2 was achieved with excellent ...
Yongfang Zhou +8 more
wiley +1 more source
NFC-enabled sensing platform for the onsite determination of asparagine in food. [PDF]
Lee HS +4 more
europepmc +1 more source
Single Solid‐State Ion Channels as Potentiometric Nanosensors
Single gold nanopores functionalized with mixed self‐assembled monolayers act as solid‐state ion channels for direct, selective potentiometric sensing of inorganic ions (Ag⁺). The design overcomes key miniaturization barriers of conventional ion‐selective electrodes by combining low resistivity with suppressed loss of active components, enabling robust
Gergely T. Solymosi +4 more
wiley +1 more source

