Results 131 to 140 of about 36,763 (279)
Porous Iridium Oxide Inverse Opal Catalysts Enable Efficient PEM Water Electrolysis
Porous iridium‐based inverse opal (IrOx‐IO) structures are introduced as high‐performance, unsupported PEM‐WE anode catalysts. Their electrochemical behavior is analyzed through porosity/surface area tuning, voltage breakdown, and circuit modeling.
Sebastian Möhle +4 more
wiley +1 more source
Unraveling the Cationic and Anionic Redox Reactions in a Conventional Layered Oxide Cathode [PDF]
Increasing interest in high-energy lithium-ion batteries has triggered the demand to clarify the reaction mechanism in battery cathodes during high-potential operation.
Li, N +6 more
core +1 more source
Impact of Anode to Cathode Crossover in Lithium‐metal Batteries With High‐Nickel Cathodes
Anode‐to‐cathode chemical crossover is identified as a critical degradation mechanism in lithium‐metal batteries. Full‐cell experiments with high‐Ni layered oxide cathodes and localized high‐concentration electrolytes reveal accelerated cathode impedance growth and CEI thickening driven by lithium‐metal anodes. The findings underscore the importance of
Zezhou Guo +2 more
wiley +1 more source
The Material Preparation Information File (MPIF) establishes a universal, community‐driven format for documenting the synthesis of metal–organic frameworks and related materials. By capturing complete, machine‐readable synthesis and characterization details, MPIF enhances reproducibility, supports FAIR data sharing, and bridges experimental chemistry ...
Ocean Cheung +10 more
wiley +1 more source
Sub-fluorinated carbon nanofibers (F-CNFs) can be described as a non-fluorinated core surrounded by a fluorocarbon lattice. The core ensures the electron flux in the cathode during the electrochemical discharge in the primary lithium battery, which ...
Marie Colin +3 more
doaj +1 more source
The novel gradient‐modified LRMO has been synthesized via a one‐step mechano‐fusion process, with simultaneous S and Zr co‐doping in the near‐surface region and an amorphous coating. The synergistic co‐functionalization stabilizes the oxygen framework, enhances charge transport, and suppresses oxygen dimerization under high potential, which enable ...
Ya Chen +15 more
wiley +1 more source
Superionic Amorphous Li2ZrCl6 and Li2HfCl6
Amorphous Li2HfCl6 and L2ZrCl6 are shown to be promising solid‐state electrolytes with predicted ionic conductivities >20 mS·cm−1. Molecular dynamics simulations with machine‐learning force fields reveal that anion vibrations and flexible MCl6 octahedra soften the Li coordination cage and enhance mobility. Correlation between Li‐ion diffusivity and the
Shukai Yao, De‐en Jiang
wiley +1 more source
Mechanoregeneration of NCM523 cathode material from spent Li-ion batteries
In this work, the NCM523 (LiNi₀.₅Co₀.₂Mn₀.₃O₂) material was regenerated by recovering the precursor materials from spent lithium-ion batteries.
A. Sokhanpazhou +2 more
doaj +1 more source
Interfacial charge transfer and low‐resistance interphase formation between PEO‐based polymer and Li10GeP2S12 solid electrolytes are investigated using multi‐electrode impedance spectroscopy and advanced analytical techniques such as XPS and ToF‐SIMS.
Ujjawal Sigar +6 more
wiley +1 more source
Non‐Functionalized Graphene as an Electrical Sensing Surface for Bacterial Detection
Pathogenic bacteria detection in food remains a major public health concern, driving the need for rapid, cost‐effective, and portable detection systems. This review focuses on the use of non‐functionalized graphene as an electrical sensing surface for bacterial detection, highlighting their unique properties, sensing mechanism, and current developments.
Jazmin Berthe +4 more
wiley +1 more source

