Results 191 to 200 of about 334,228 (331)

Synthesis and Characterization of Nickel Oxide Nanostructures for Electrochemical Analysis of Methotrexate

open access: gold, 2021
Saeed Ahmed Lakho   +7 more
openalex   +1 more source

Designing Thermally Compatible Template‐Coating Pairs Toward Dimensionally Stable 3D Porous Carbons with Tunable Density

open access: yesAdvanced Functional Materials, EarlyView.
3D porous carbons with tunable density are crucial for energy storage, separations, and load‐bearing applications; however, their fabrication is often constrained by shrinkage during pyrolysis. This study optimizes and demonstrates the versatility of a template–coating pair strategy, producing materials that largely retain their shape and hierarchical ...
Adarsh Suresh   +7 more
wiley   +1 more source

A Smart Bio‐Battery Facilitates Diabetic Bone Defect Repair Via Inducing Macrophage Reprogramming and Synergistically Modulating Bone Remodeling Coupling

open access: yesAdvanced Functional Materials, EarlyView.
This research presents a novel implantable bio‐battery, GF‐OsG, tailored for diabetic bone repair. GF‐OsG generates microcurrents in high‐glucose conditions to enhance vascularization, shift macrophages to the M2 phenotype, and regulate immune responses.
Nanning Lv   +10 more
wiley   +1 more source

Electrochemical Oxidation for Treatment of PFAS in Contaminated Water and Fractionated Foam-A Pilot-Scale Study. [PDF]

open access: yesACS ES T Water, 2023
Smith SJ   +8 more
europepmc   +1 more source

Coupled Ferroelectric–Photoelectrochemical in Water Reduction Over BiFeO3 Thin Film Heterostructure Modulated by Rare‐Earth Doping

open access: yesAdvanced Functional Materials, EarlyView.
Gd‐doped BFO (BGFO) exhibits a ∼2‐order reduction in leakage current owing to its lowest content of oxygen vacancies. This leads to a ∼2.5‐fold increase in remnant polarization. These improvements in BGFO effectively boost charge separation and transportation, resulting in the greatest incident photon‐to‐current efficiency of 12.9 ± 0.73% and a ∼1.5 ...
Ming‐Wei Chu   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy