Results 71 to 80 of about 124,229 (247)
Electrochemical performance of multiphase nickel hydroxide
Abstract The high density nano-crystalline multiphase nickel hydroxide containing at least three doping elements was synthesized and its electrochemical characteristics were studied. The electrochemical behavior of the high density spherical multiphases α-Ni(OH) 2 were also investigated. The results show that the structure of the material is a mixed
Fang-chen LUO +2 more
openaire +1 more source
Cu‐based catalysts as a cornerstone in advancing sustainable energy technologies are fully reviewed in this manuscript, highlighting their potential in photo‐ and electrocatalysis. It includes metallic copper, copper oxides, copper sulfides, copper halide perovskites, copper‐based metal–organic frameworks (MOFs), and covalent organic frameworks (COFs),
Jéssica C. de Almeida +16 more
wiley +1 more source
This work demonstrates the successful integration of a phenanthroline‐based 2D COF with MnI catalytic sites into a catholyte‐free membrane‐electrode‐assembly cell for CO2 electroreduction. The crystalline COF actively suppresses Mn⁰–Mn⁰ dimerization, achieving a turnover frequency of 617 h⁻¹ at 2.8 V (full‐cell potential), and enabling stable operation.
Laura Spies +8 more
wiley +1 more source
A pore tuning strategy to amplify the multi‐site MOF‐SO2 interactions is proposed to achieve an enhanced trace SO2 capture and chemiresistive sensing in highly stable isostructural DMOFs by annelating benzene rings. This work provides a facile strategy to achieve tailor‐made stable MOF materials for specific multifunctional applications.
Shanghua Xing +9 more
wiley +1 more source
By a simple anti‐Galvanic reaction, up to six copper atoms could be preferably doped into the Ag2(SR)5 staple motifs and Ag20 dodecahedral shell of an atomically precise Ag44(SR)30 nanocluster. When anatase TiO2 is used as substrate, the (AgCu)44/TiO2 photocatalyst exhibited much improved activity in photocatalytic CO2 reduction compared to Ag44/TiO2 ...
Ye Liu +5 more
wiley +1 more source
MXene dervied CoFe composites show increased initial Oxygen Evolution Reaction (OER) activity compared to the pure CoFe and MXene in an Anion Exchange Membrane device. Vanadium vacancies in the MXene plays a role in increased OER activity and hinders Fe leaching in the AEM device over using the pure V2C MXene as a support material for the CoFe ...
Can Kaplan +16 more
wiley +1 more source
A self‐sustaining solar photoelectrochemical cell (SS‐PEC) is developed to recover uranium from aqueous UO22+ with concurrent organic oxidation and electricity production. The monolithical photoanode directly captures electrons from organic compounds, leading to the oxidation of organic compounds and the decomposition of uranium‐organic complexes ...
Yumei Wang +7 more
wiley +1 more source
Multifunctional atomic layer deposited coatings and interface treatments enhance direct solar water splitting on GaAs/GaInP tandem cells. Optimized TiO2/Pt nanoparticle bilayers ensure durability and catalytic efficiency with minimal optical losses, while H2 plasma pretreatments maximize photovoltage and interfacial charge extraction.
Tim F. Rieth +8 more
wiley +1 more source
The quaternary alloys La0.8-xCexMg0.2Ni3.8 (x=0, 0.1,0.3,0.5) were prepared by induction melting, and the effects of partial substitution of Ce for La on the phase structure and electrochemical performances of super lattice La4MgNi19 negative materials ...
XU Jian-yi +5 more
doaj
Graphene Oxide and Its Electrochemical Performance
In this study, graphene oxide (GO) was synthesized from graphite flakes using simplified Hummer’s method. Field Emission Scanning Electron Microscopy (FESEM) image showed that the GO nanosheets had an average area 7000 μm2 with lateral dimension of up to 150 μm.
Ban, F.Y. +3 more
openaire +1 more source

