Results 311 to 320 of about 249,072 (381)

High‐Entropy Doped KTiOPO4‐Type Vanadium‐Based Fluorophosphate Cathodes for High‐Energy Sodium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
This work presents a high‐entropy doped NaV0.95 (Fe, Mn, Ni, Al, Ca)0.05PO4F cathode, which enables the whole utilization of Na ions, enhances the reaction kinetics without carbon coating, and realizes a solid‐solution reaction mechanism with a single‐crystal structure.
Yingkai Hua   +10 more
wiley   +1 more source

Tunable Coordination Number in Non‐Metal‐Introduced Copper Catalysts Enables High‐Performance Electrochemical CO2 Reduction to C2 Products

open access: yesAdvanced Functional Materials, EarlyView.
Copper catalysts introduced with different non‐metallic elements regulating the coordination number of Cu are prepared by magnetron sputtering. Reducing the Cu coordination number enhances C─C coupling and boosts C2+ product selectivity, by lowering the energy barrier for the *CO → *CHO conversion step. The optimized Si‐doped Cu catalyst achieves a C2+
Xiaoye Du   +8 more
wiley   +1 more source

Encapsulating Zinc Powder in MXene/Silk Scaffolds with Zincophilic‐Hydrophobic Polymer for Flexible Zinc‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
This work develops flexible zinc‐ion batteries (FZIBs) using a zincophilic/hydrophobic polymer (thermoplastic polycarbonate‐based polyurethane, TPCU) to protect Zn powder anodes and MXene/Silk (MXS) as flexible current collectors. The designed TPCU‐ZnP@MXS structure enables uniform Zn deposition, yielding dendrite‐free anodes with stable cycling ...
Zixuan Yang   +8 more
wiley   +1 more source

Buckling‐Resistant and Trace‐Stacked (BRATS) Design Enables Aid‐Free Implantation of Flexible Multielectrode Array with Minimized Inflammatory Tissue Response

open access: yesAdvanced Functional Materials, EarlyView.
Buckling‐resistant and trace‐stacked (BRATS) intracortical microelectrode arrays (MEAs) eliminate the need for insertion aid and complex surgical setup, resulting in minimal inflammatory tissue response, compared to conventional flexible MEAs inserted with aid. Trace stacking effectively doubled the channel count without increasing the MEA shank width,
May Yoon Pwint, Delin Shi, X. Tracy Cui
wiley   +1 more source

Label‐Free and Low‐Power Driven Cancer Biomarker Detection Enabled by 2D Hexagonal Titanium Oxide

open access: yesAdvanced Functional Materials, EarlyView.
A low‐power driven FET biosensor based on 2D hexagonal TiO2 detects the cancer biomarker carcinoembryonic antigen with high sensitivity, a low detection limit of 0.22 pg mL−1, and excellent selectivity. Leveraging the unique electronic properties of the material, this work demonstrates strong potential for integration into miniature and portable cancer
Yange Luan   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy