Results 221 to 230 of about 131,022 (264)
Ductility Tuning via Cluster Network Characteristics of Porous Components
Network optimization via cluster characteristics induced by interaction of stress concentration is proposed, demonstrating increased cluster size and dispersion in non‐uniform porous components. The optimized structures exhibit, for the first time, that enhanced ductility and damage progression is controllable through zigzag cluster network designed by
Ryota Toyoba +4 more
wiley +1 more source
This review traces the evolution of wireless power transfer (WPT) for implantable medical devices, spanning electromagnetic, magnetoelectric, acoustic, and magneto‐dynamic systems. Quantitative comparisons of power, distance, and device scale highlight trade‐offs across modalities, while emerging hybrid mechanisms reveal strategies to overcome ...
Junyeop Kim, Yoonseok Park
wiley +1 more source
This review explores advances in wearable and lab‐on‐chip technologies for breast cancer detection. Covering tactile, thermal, ultrasound, microwave, electrical impedance tomography, electrochemical, microelectromechanical, and optical systems, it highlights innovations in flexible electronics, nanomaterials, and machine learning.
Neshika Wijewardhane +4 more
wiley +1 more source
Respiratory Signal Processing and Analysis Using Flexible Capacitive Sensor Data
Capacitive pressure sensors based on poly(glycerol sebacate) (PGS) substrates are developed for continuous, non‐invasive respiratory monitoring. Integrated with a signal processing algorithm, they enable accurate tracking of thoracic expansion and retraction.
Bernardo A. Vicente +3 more
wiley +1 more source
MXene‐Coated 3D Printed Horn Antennas for Ku Frequency Band
An additive manufacturing approach to 3D printing horn antennas and coating them with Ti3C2Tx MXene is proposed. Rapid fabrication of lightweight, high‐performance antennas operating in the Ku‐band (12.4–18 GHz) has been demonstrated. The MXene‐coated antennas exhibit comparable electromagnetic performance to conventional, costly aluminum ones, with ...
Zahra Sarpanah Sourkouhi +3 more
wiley +1 more source
Recent Advances of Slip Sensors for Smart Robotics
This review summarizes recent progress in robotic slip sensors across mechanical, electrical, thermal, optical, magnetic, and acoustic mechanisms, offering a comprehensive reference for the selection of slip sensors in robotic applications. In addition, current challenges and emerging trends are identified to advance the development of robust, adaptive,
Xingyu Zhang +8 more
wiley +1 more source
This review explores the integration of microfluidic technology with organoid systems as an innovative platform for studying menopausea complex multi‐organ condition. By enabling precise simulation of inter‐organ communication and hormone responses, microfluidic organoids offer a physiologically relevant model for investigating menopausal syndrome and ...
Qianyi Zhang +4 more
wiley +1 more source
Binder‐free EGaIn–CB composite deliver printable, recyclable liquid‐metal conductors without sintering or polymer binders. Only 1.5 wt% CB yields shear‐thinning, high‐viscosity rheology, ∼60% bulk EGaIn conductivity, robust stretchability, high thermal conductivity, and strong EMI shielding (35 → 70 dB at 100% strain).
Elahe Parvini +4 more
wiley +1 more source
Combined approach of electromagnetic (Power) and ultrasound (data harvesting) waves is proposed to address the miniaturized ultrasonic implants. Electromagnetic waves trigger the piezoelectric element to generate the acoustic pulse which is modulated by the variations in the sensor's impedance.
Anam Bhatti +6 more
wiley +1 more source
Optimizing Magnet Spacing to Enhance Power and Energy Density in Magnetically Levitated Electromagnetic Vibration Energy Harvesters. [PDF]
Alimova M +5 more
europepmc +1 more source

