Results 51 to 60 of about 44,573 (314)

Immunity of electronic devices against radio-frequency electromagnetic fields

open access: yesMATEC Web of Conferences, 2017
One of the major types of electromagnetic interference, which affect electronic devices in their normal operation, is the interference with radio-frequency electromagnetic fields.
Urbancokova Hana   +3 more
doaj   +1 more source

Interferences of Electromagnetic Pulses on Microcontroller Units

open access: yesApplied Sciences, 2023
In this study, electromagnetic interference testing of microcontroller units (MCUs) under different electromagnetic pulse (EMP) amplitudes, full width at half maximum (FWHM), and at different angles was carried out on an EMP cell.
Linjing Fan, Xudong Zu, Zhengxiang Huang
doaj   +1 more source

Synchrotron Radiation for Quantum Technology

open access: yesAdvanced Functional Materials, EarlyView.
Materials and interfaces underpin quantum technologies, with synchrotron and FEL methods key to understanding and optimizing them. Advances span superconducting and semiconducting qubits, 2D materials, and topological systems, where strain, defects, and interfaces govern performance.
Oliver Rader   +10 more
wiley   +1 more source

Automation of Electromagnetic Interference Testing [PDF]

open access: yes1985 IEEE International Symposium on Electromagnetic Compatibility, 1985
n ...
Dringenburg, Dean, Siefker, Robert
openaire   +2 more sources

Transducer Materials Mediated Deep Brain Stimulation in Neurological Disorders

open access: yesAdvanced Functional Materials, EarlyView.
This review discusses advanced transducer materials for improving deep brain stimulation (DBS) in neurological disorders. These materials respond to light, ultrasound, or magnetic fields, enabling precise, less invasive neuromodulation. Their stimulus‐responsive properties enhance neural control and adaptive therapy, paving the way for next‐generation ...
Di Zhao   +5 more
wiley   +1 more source

Ladder‐Type Benzene‐Perylene Dyes with Efficient Laser Properties in the Near‐IR by Detracting/Activating Low/High Frequency Vibronic Modes

open access: yesAdvanced Functional Materials, EarlyView.
The NNR‐n series of oligomeric nanographenes delivers exceptional emission performance. This work shows that this performance is originated by their ladder‐type structure, which effectively deactivates low‐frequency vibronic modes. This deactivation neglects the main pathway for non‐emissive deactivation, even in the near‐infrared region. The potential
Marcos Díaz‐Fernández   +12 more
wiley   +1 more source

Research on Electromagnetic Compatibility of Onboard Balise Transmission Module

open access: yesKongzhi Yu Xinxi Jishu, 2020
As an important part of automatic train protection system, onboard BTM (balise transmission module) fault caused by electromagnetic interference occurs frequently in the actual operation process of train due to its complex electromagnetic environment ...
YANG Tianfan   +3 more
doaj  

Probing Early Particle‐Cell Membrane Interactions via Single‐Cell and Single‐Particle Interaction Analysis

open access: yesAdvanced Functional Materials, EarlyView.
The pre‐internalization phase of endocytosis remains poorly characterized at single‐cell levels. Single‐cell pre‐internalization mechanics are investigated using advanced robotic techniques. Cancer cells exhibit biphasic adhesion – rapid initial binding followed by reinforcement – while fibroblasts show gradual engagement.
Houari Bettahar   +6 more
wiley   +1 more source

Rapid Diagnostics of Reconfigurable Intelligent Surfaces Using Space‐Time‐Coding Modulation

open access: yesAdvanced Functional Materials, EarlyView.
A fast reconfigurable‐intelligent‐surface (RIS) diagnostics method is proposed based on spatio‐temporal modulation with orthogonal codes. Theoretical analysis demonstrates a clear distinction in code channel power between normal and faulty elements. Simulations validate its feasibility under high fault ratios and varying receiving angles.
Yi Ning Zheng   +7 more
wiley   +1 more source

Printing Nacre‐Mimetic MXene‐Based E‐Textile Devices for Sensing and Breathing‐Pattern Recognition Using Machine Learning

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a Ti3C2Tx MXene/WPU nacre‐mimetic nanomaterial as a printable ink for direct‐write printing onto textiles‐based sensors. The resulting wearable device demonstrates high sensitivity, biocompatibility, and mechanical strength. Furthermore, NFC‐enabled humidity sensor produces time‐series data, which informs a machine learning ...
Lulu Xu   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy