Results 161 to 170 of about 630,759 (334)

Transducer Materials Mediated Deep Brain Stimulation in Neurological Disorders

open access: yesAdvanced Functional Materials, EarlyView.
This review discusses advanced transducer materials for improving deep brain stimulation (DBS) in neurological disorders. These materials respond to light, ultrasound, or magnetic fields, enabling precise, less invasive neuromodulation. Their stimulus‐responsive properties enhance neural control and adaptive therapy, paving the way for next‐generation ...
Di Zhao   +5 more
wiley   +1 more source

Towards evolving electronic circuits for autonomous space applications [PDF]

open access: green, 2002
Jason Lohn   +3 more
openalex   +1 more source

Reconfigurable Three‐Dimensional Superconducting Nanoarchitectures

open access: yesAdvanced Functional Materials, EarlyView.
3D superconducting nanostructures offer new possibilities for emergent physical phenomena. However, fabricating complex geometries remains challenging. Here 3D nanoprinting of complex 3D superconducting nanoarchitectures is established. As well as propagating superconducting vortices in 3D, anisotropic superconducting properties with geometric ...
Elina Zhakina   +11 more
wiley   +1 more source

Achieving Stable Paired Electrolysis of Captured CO2 and 5‐Hydroxymethylfurfural (HMF) via Tuning Anolyte Composition and Anode Surface

open access: yesAdvanced Functional Materials, EarlyView.
Highly stable paired electrolysis of CO2 and biomass‐derived alcohol (HMF) is achieved by replacing conventional alkaline electrolytes with a tailored triethylamine‐carbonate buffer and anion‐conducting ionomer coatings. This configuration effectively mitigates electrolyte degradation and pH instability typically encountered in alkaline CO2 ...
Mi‐Young Lee   +3 more
wiley   +1 more source

Electronic Circuit Realization of Folthret

open access: bronze, 1992
Keiichi Yoshino, Hirokazu Yokoi
openalex   +2 more sources

Fluorinated Interphase Enabled by Lithium Salt‐Driven Electrical Double‐Layer Modulation for Advanced Zinc Metal Batteries

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a highly soluble, reduction‐active lithium salt into conventional zinc battery electrolytes, enhancing the solvation structure and electric double layer. These modifications significantly improve the reversibility of the zinc anode and mitigate cathode material dissolution, presenting a novel approach to enhancing the performance ...
Ziwei Zhao   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy