Results 241 to 250 of about 2,228,729 (310)

Lithium‐Ion/Lithium Metal Hybrid Batteries Enabled by Lithio‐Amphiphilic Bilayer Protection

open access: yesAdvanced Functional Materials, EarlyView.
Lithium‐ion/Lithium metal hybrid batteries couple intercalation and plating mechanisms, yet are plagued by lithium dendrite formation. Here, a lithio‐amphiphilic bilayer comprising silver (Ag)/chromium(Cr) thin films is sequentially deposited on the graphite anode.
Jihoon Oh   +12 more
wiley   +1 more source

All‐Optical Electric Field Sensing with Nanodiamond‐Doped Polymer Thin Films

open access: yesAdvanced Functional Materials, EarlyView.
The photoluminescence (PL) of fluorescent nanodiamonds (FNDs) in a polymer‐based capacitor device is sensitive to electric fields. When an external electric field is applied, the PL intensity of the negatively charged nitrogen‐vacancy center (NV‐) increases, while that of the neutrally charged NV center (NV0) decreases.
Roy Styles   +11 more
wiley   +1 more source

Toward the 3rd Generation of Smart Farming: Materials, Devices, and Systems for E‐Plant Technologies

open access: yesAdvanced Functional Materials, EarlyView.
This review explores the latest developments in e‐plant technologies, which are revolutionizing smart farming by enabling real‐time monitoring of plant and environmental conditions. It covers the design, applications, and systems of e‐plant devices, detailing how they integrate data analytics to optimize agricultural practices, enhance crop yields, and
Daegun Kim   +5 more
wiley   +1 more source

Self‐Assembled Membranes for High Ion Selectivity and Proton Blocking in Electrochemical Applications

open access: yesAdvanced Functional Materials, EarlyView.
Phase‐separated alkyl poly(vinylimidazolium) membranes exhibit exceptional ionic conductivity, counter‐ion selectivity, and proton‐blocking ability by forming stable micro/macrophase‐separated domains. This design overcomes the conductivity–selectivity trade‐off in conventional ion‐exchange membranes (IEMs), offering a new paradigm for high‐performance
Min Gyu Shin   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy