Results 271 to 280 of about 134,912 (385)

Synthesis of LaMnO3 Nanofibers via Electrospinning

open access: hybrid, 2009
Jinxian Wang   +6 more
openalex   +2 more sources

A review on fabrication of nanofibers via electrospinning and their applications

open access: yesSN Applied Sciences, 2019
M. Islam   +3 more
semanticscholar   +1 more source

Generation of Neural Organoids and Their Application in Disease Modeling and Regenerative Medicine

open access: yesAdvanced Science, EarlyView.
Neural organoids provide a versatile platform for neurological research. Advances in organoid technology have partially achieved human neural tissue complexity in terms of tissue structure, cell diversity, and neural signaling, offering insights into neural disorders and regenerative strategies. Technology advances from biomaterials, bio‐manufacturing,
Ruiqi Huang   +4 more
wiley   +1 more source

Human Nervous System‐Based Biohybrid Robot‐On‐A‐Chip with Sensing Function for Toxicity Screening

open access: yesAdvanced Science, EarlyView.
Human nervous system‐based biohybrid robot‐on‐a chip with eye function as sensing system in addition to brain/motor neuron/muscle functions is proposed. Upon light stimulation, the eye assembloid generates electrophysiological signals, which are transmitted through the cerebral organoid and motor neuron spheroid, inducing muscle movement.
Minkyu Shin   +6 more
wiley   +1 more source

Nano-engineering highly toughened fibre reinforced polymer composites by interleaving electrospun nanofibres for advanced applications [PDF]

open access: yes, 2017
Daelemans, Lode   +5 more
core  

Aligned Conductive Magnetic Nanofibers with Directional Magnetic Field Stimulation Promotes Peripheral Nerve Regeneration

open access: yesAdvanced Science, EarlyView.
Peripheral nerve injury necessitates alternatives to autografts. This study combines magnetic nanoparticles, oriented PCL fibers, and Ppy to create a conductive, magnetically active scaffold. In vitro and in vivo experiments demonstrated enhanced downstream pathways of calcium signaling, as revealed by transcriptome analysis.
Zheyuan Fan   +4 more
wiley   +1 more source

Bionic Nanostructures Create Mechanical Signals to Mediate the Composite Structural Bone Regeneration Through Multi‐System Regulation

open access: yesAdvanced Science, EarlyView.
Inspired by the structural and functional characteristics of bone, bionic nanomaterials combined with nanotechnology can more accurately replicate stem cell niches, enabling the design of bone tissue engineering scaffolds with diverse nanoscale properties to promote stem cell migration, proliferation, and differentiation. This precise control over stem
Yangfan Pei   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy