Results 71 to 80 of about 72,032 (249)
On the Order of Nilpotent Multipliers of Finite p-Groups [PDF]
Let $G$ be a finite $p$-group of order $p^n$. YA. G. Berkovich (Journal of Algebra {\bf 144}, 269-272 (1991)) proved that $G$ is elementary abelian $p$-group if and only if the order of its Schur multiplier, $M(G)$, is at the maximum case. In this paper,
Mashayekhy, Behrooz+1 more
core
Abstract The unification of conformal and fuzzy gravities with internal interactions is based on the facts that i) the tangent group of a curved manifold and the manifold itself do not necessarily have the same dimensions and ii) both gravitational theories considered here have been formulated in a gauge theoretic way.
Gregory Patellis+3 more
wiley +1 more source
In the representation theory of finite groups, there is a well-known and important conjecture, due to Brou\'e saying that for any prime p, if a p-block A of a finite group G has an abelian defect group P, then A and its Brauer corresponding block B of ...
Koshitani, Shigeo+2 more
core +1 more source
Efficient Simulation of Open Quantum Systems on NISQ Trapped‐Ion Hardware
Open quantum systems exhibit rich dynamics that can be simulated efficiently on quantum computers, allowing us to learn more about their behavior. This work applies a new method to simulate certain open quantum systems on noisy trapped‐ion quantum hardware.
Colin Burdine+3 more
wiley +1 more source
The theory of $p$-ramification, regarding the Galois group of the maximal pro-$p$-extension of a number field $K$, unramified outside $p$ and $\infty$, is well known including numerical experiments with PARI/GP programs.
Georges Gras
doaj +1 more source
The Mod-2 Cohomology Ring of the Third Conway Group is Cohen-Macaulay
By explicit machine computation we obtain the mod-2 cohomology ring of the third Conway group Co_3. It is Cohen-Macaulay, has dimension 4, and is detected on the maximal elementary abelian 2-subgroups.Comment: 12 pages; writing style now more ...
Adem+10 more
core +1 more source
The birational geometry of GIT quotients
Abstract Geometric invariant theory (GIT) produces quotients of algebraic varieties by reductive groups. If the variety is projective, this quotient depends on a choice of polarisation; by work of Dolgachev–Hu and Thaddeus, it is known that two quotients of the same variety using different polarisations are related by birational transformations.
Ruadhaí Dervan, Rémi Reboulet
wiley +1 more source
Spectra of subrings of cohomology generated by characteristic classes for fusion systems
Abstract If F$\mathcal {F}$ is a saturated fusion system on a finite p$p$‐group S$S$, we define the Chern subring Ch(F)${\operatorname{Ch}}(\mathcal {F})$ of F$\mathcal {F}$ to be the subring of H∗(S;Fp)$H^*(S;{\mathbb {F}}_p)$ generated by Chern classes of F$\mathcal {F}$‐stable representations of S$S$. We show that Ch(F)${\operatorname{Ch}}(\mathcal {
Ian J. Leary, Jason Semeraro
wiley +1 more source
Étale motives of geometric origin
Abstract Over qcqs finite‐dimensional schemes, we prove that étale motives of geometric origin can be characterised by a constructibility property which is purely categorical, giving a full answer to the question ‘Do all constructible étale motives come from geometry?’ which dates back to Cisinski and Déglise's work.
Raphaël Ruimy, Swann Tubach
wiley +1 more source
A characterisation of elementary abelian 3-groups
Tarnauceanu [Archiv der Mathematik, 102 (1), (2014), 11--14] gave a characterisation of elementary abelian $2$-groups in terms of their maximal sum-free sets. His theorem states that a finite group $G$ is an elementary abelian $2$-group if and only if the set of maximal sum-free sets coincides with the set of complements of the maximal subgroups.
openaire +3 more sources