Results 71 to 80 of about 974 (238)
On stabilizers in finite permutation groups
Abstract Let G$G$ be a permutation group on the finite set Ω$\Omega$. We prove various results about partitions of Ω$\Omega$ whose stabilizers have good properties. In particular, in every solvable permutation group there is a set‐stabilizer whose orbits have length at most 6, which is best possible and answers two questions of Babai.
Luca Sabatini
wiley +1 more source
Morita equivalence classes of blocks with elementary abelian defect groups of order 16 [PDF]
Charles W. Eaton
openalex +2 more sources
The log Grothendieck ring of varieties
Abstract We define a Grothendieck ring of varieties for log schemes. It is generated by one additional class “P$P$” over the usual Grothendieck ring. We show the naïve definition of log Hodge numbers does not make sense for all log schemes. We offer an alternative that does.
Andreas Gross +4 more
wiley +1 more source
Residually rationally solvable one‐relator groups
Abstract We show that the intersection of the rational derived series of a one‐relator group is rationally perfect and is normally generated by a single element. As a corollary, we characterise precisely when a one‐relator group is residually rationally solvable.
Marco Linton
wiley +1 more source
Torsion classes of extended Dynkin quivers over commutative rings
Abstract For a Noetherian R$R$‐algebra Λ$\Lambda$, there is a canonical inclusion torsΛ→∏p∈SpecRtors(κ(p)Λ)$\mathop {\mathsf {tors}}\Lambda \rightarrow \prod _{\mathfrak {p}\in \operatorname{Spec}R}\mathop {\mathsf {tors}}(\kappa (\mathfrak {p})\Lambda)$, and each element in the image satisfies a certain compatibility condition.
Osamu Iyama, Yuta Kimura
wiley +1 more source
On Parametrization of the Linear GL(4,C) and Unitary SU(4) Groups in Terms of Dirac Matrices
Parametrization of 4 × 4-matrices G of the complex linear group GL(4,C) in terms of four complex 4-vector parameters (k,m,n,l) is investigated. Additional restrictions separating some subgroups of GL(4,C) are given explicitly.
Natalia G. Tokarevskaya +2 more
doaj +1 more source
It is known that the so-called elementary symmetric polynomials $R_n(x) = \int_{[0,1]}(x(t))^n\,dt$ form an algebraic basis in the algebra of all symmetric continuous polynomials on the complex Banach space $L_\infty,$ which is dense in the Fr\'{e}chet ...
T.V. Vasylyshyn
doaj +1 more source
Explicit formulas for the cohomology of the elementary abelian $p$-groups [PDF]
Constantin-Nicolae Beli
openalex +1 more source
Radical preservation and the finitistic dimension
Abstract We introduce the notion of radical preservation and prove that a radical‐preserving homomorphism of left artinian rings of finite projective dimension with superfluous kernel reflects the finiteness of the little finitistic, big finitistic, and global dimension.
Odysseas Giatagantzidis
wiley +1 more source
Borsuk-Ulam theorems for elementary abelian 2-groups
Let $G$ be a fct Lie group and let $U$ and $V$ be finite-dimensional real $G$-modules with $V^G=0$. A theorem of Marzantowicz, de Mattos and dos Santos estimates the covering dimension of the zero-set of a $G$-map from the unit sphere in $U$ to $V$ when $G$ is an elementary abelian $p$-group for some prime $p$ or a torus.
openaire +3 more sources

